Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 98(1-1): 012202, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110846

RESUMO

Understanding under what conditions it is possible to construct equivalent ensembles is key to advancing our ability to connect microscopic and macroscopic properties of nonequilibrium statistical mechanics. In the case of fluid dynamical systems, one issue is to test whether different models for viscosity lead to the same macroscopic properties of the fluid systems in different regimes. Such models include, besides the standard choice of constant viscosity, cases where the time symmetry of the evolution equations is exactly preserved, as it must be in the corresponding microscopic systems, when available. Here a time-reversible dynamics is obtained by imposing the conservation of global observables. We test the equivalence of reversible and irreversible ensembles for the case of a multiscale shell model of turbulence. We verify that the equivalence is obeyed for the mean values of macroscopic observables, up to an error that vanishes as the system becomes more and more chaotic.

2.
Eur Phys J E Soft Matter ; 41(4): 48, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29619671

RESUMO

Turbulent flows governed by the Navier-Stokes equations (NSE) generate an out-of-equilibrium time irreversible energy cascade from large to small scales. In the NSE, the energy transfer is due to the nonlinear terms that are formally symmetric under time reversal. As for the dissipative term: first, it explicitly breaks time reversibility; second, it produces a small-scale sink for the energy transfer that remains effective even in the limit of vanishing viscosity. As a result, it is not clear how to disentangle the time irreversibility originating from the non-equilibrium energy cascade from the explicit time-reversal symmetry breaking due to the viscous term. To this aim, in this paper we investigate the properties of the energy transfer in turbulent shell models by using a reversible viscous mechanism, avoiding any explicit breaking of the [Formula: see text] symmetry. We probe time irreversibility by studying the statistics of Lagrangian power, which is found to be asymmetric under time reversal also in the time-reversible model. This suggests that the turbulent dynamics converges to a strange attractor where time reversibility is spontaneously broken and whose properties are robust for what concerns purely inertial degrees of freedoms, as verified by the anomalous scaling behavior of the velocity structure functions.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26565346

RESUMO

Following the exact decomposition in eigenstates of helicity for the Navier-Stokes equations in Fourier space [F. Waleffe, Phys. Fluids A 4, 350 (1992)], we introduce a modified version of helical shell models for turbulence with nonlocal triadic interactions. By using both an analytical argument and numerical simulation, we show that there exists a class of models, with a specific helical structure, that exhibits a statistically stable inverse energy cascade, in close analogy with that predicted for the Navier-Stokes equations restricted to the same helical interactions. We further support the idea that turbulent energy transfer is the result of a strong entanglement among triads possessing different transfer properties.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26066244

RESUMO

We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η, that maximizes the clustering of the particles.


Assuntos
Hidrodinâmica , Modelos Teóricos , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...