Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19160, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580412

RESUMO

This study investigated whether oxidative and glycolytic rat skeletal muscles respond differently to a high-fat (HF) sucrose-enriched diet with respect to diacylglycerol (DAG) and ceramides accumulation, protein kinase C (PKC) activation, glucose metabolism, and the expression of inflammatory genes. HF diet (8 weeks) suppressed insulin-stimulated glycogen synthesis and glucose oxidation in soleus (Sol), extensor digitorum longus (EDL) and epitrochlearis (Epit) muscles. However, DAG and ceramides levels increased in Sol and EDL, but not in Epit muscles of HF-fed rats. Additionally, membrane-bound PKC-delta and PKC-theta increased in Sol and EDL, whereas in Epit muscles both PKC isoforms were reduced by HF diet. In Epit muscles, HF diet also increased the expression of tumor necrosis factor-α (TNF-α) receptors (CD40 and FAS), toll-like receptor 4 (TLR4), and nuclear factor kappa light polypeptide gene enhancer in B cells (NF-kB), whereas in Sol and EDL muscles the expression of these inflammatory genes remained unchanged upon HF feeding. In conclusion, HF diet caused DAG and ceramides accumulation, PKC activation, and the induction of inflammatory pathways in a fiber type-specific manner. These findings help explain why oxidative and glycolytic muscles similarly develop insulin resistance, despite major differences in their metabolic characteristics and responsiveness to dietary lipid abundance.


Assuntos
Glicólise/imunologia , Resistência à Insulina/imunologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Ceramidas/análise , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Diglicerídeos/análise , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/diagnóstico , Inflamação/imunologia , Inflamação/metabolismo , Insulina/metabolismo , Masculino , Músculo Esquelético/imunologia , Obesidade/etiologia , Obesidade/imunologia , Estresse Oxidativo/imunologia , Ratos
3.
Mol Neurobiol ; 54(6): 4723-4737, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447807

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) caused by demyelination, immune cell infiltration, and axonal damage. Herein, we sought to investigate the influence of physical exercise on mice experimental autoimmune encephalomyelitis (EAE), a reported MS model. Data show that both strength and endurance training protocols consistently prevented clinical signs of EAE and decreased oxidative stress, an effect which was likely due to improving genomic antioxidant defense-nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response elements (ARE) pathway-in the CNS. In addition, physical exercise inhibited the production of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-17, and IL-1ß in the spinal cord of mice with EAE. Of note, spleen cells obtained from strength training group incubated with MOG35-55 showed a significant upregulation of CD25 and IL-10 levels, with a decrease of IL-6, MCP-1, and tumor necrosis factor (TNF)-α production, mainly, during acute and chronic phase of EAE. Moreover, these immunomodulatory effects of exercise were associated with reduced expression of adhesion molecules, especially of platelet and endothelial cell adhesion molecule 1 (PECAM-1). Finally, physical exercise also restored the expression of tight junctions in spinal cord. Together, these results demonstrate that mild/moderate physical exercise, when performed regularly in mice, consistently attenuates the progression and pathological hallmarks of EAE, thereby representing an important non-pharmacological intervention for the improvement of immune-mediated diseases such as MS. Graphical Abstract Schematic diagram illustrating the beneficial effects of physical exercise during experimental model of MS. Physical exercise, especially strength (ST) and endurance (ET) training protocols, inhibits the development and progression of disease, measured by the mean maximal clinical score (1.5 and 1.0, respectively), with inhibition of 30 % and 50 %, respectively, based on the AUC, compared with EAEuntreated group. In addition, ST and ET decreased oxidative stress, possibly, through genomic antioxidant defense, Nrf2-Keap1 signaling pathway, in the CNS. Physical exercise inhibited the production of inflammatory cytokines, such as IFN-γ, IL-17 and IL-1ß in the spinal cord after EAE induction, as well as spleen cells obtained from ST group showed a significant upregulation of regulatory T cell markers, such as CD25 and IL-10 levels, and blocked IL-6, MCP-1 and TNF-α production, mainly, during acute and chronic phase of EAE. Finally, these immunomodulatory effects of exercise were associated with inhibition of adhesion molecules and reestablishment of tight junctions expression in spinal cord tissue, thereby limiting BBB permeability and transmigration of autoreactive T cells to the CNS. NO, nitric oxide; GPx, glutathione peroxidase, GSH, glutathione; Nrf2, nuclear factor (erythroid-derived 2)-like 2; CNS, central nervous system; BBB, blood-brain barrier; IFN-g, interferon-gamma; IL-17, interleukin 17; IL-1b, interleukin-1beta.


Assuntos
Barreira Hematoencefálica/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunidade Inata , Mediadores da Inflamação/metabolismo , Tecido Linfoide/imunologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Permeabilidade , Resistência Física , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Proteínas de Junções Íntimas/metabolismo
5.
Autoimmunity ; 49(2): 132-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26703077

RESUMO

Multiple sclerosis (MS) is an autoimmune demyelinating inflammatory disease characterized by recurrent episodes of T cell-mediated immune attack on central nervous system (CNS) myelin, leading to axon damage and progressive disability. The existing therapies for MS are only partially effective and are associated with undesirable side effects. Low-level laser therapy (LLLT) has been clinically used to treat inflammation, and to induce tissue healing and repair processes. However, there are no reports about the effects and mechanisms of LLLT in experimental autoimmune encephalomyelitis (EAE), an established model of MS. Here, we report the effects and underlying mechanisms of action of LLLT (AlGaInP, 660 nm and GaAs, 904 nm) irradiated on the spinal cord during EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG35-55 peptide emulsified in complete Freund's adjuvant. Our results showed that LLLT consistently reduced the clinical score of EAE and delayed the disease onset, and also prevented weight loss induced by immunization. Furthermore, these beneficial effects of LLLT seem to be associated with the down-regulation of NO levels in the CNS, although the treatment with LLLT failed to inhibit lipid peroxidation and restore antioxidant defense during EAE. Finally, histological analysis showed that LLLT blocked neuroinflammation through a reduction of inflammatory cells in the CNS, especially lymphocytes, as well as preventing demyelination in the spinal cord after EAE induction. Together, our results suggest the use of LLLT as a therapeutic application during autoimmune neuroinflammatory responses, such as MS.


Assuntos
Terapia com Luz de Baixa Intensidade , Esclerose Múltipla/patologia , Animais , Antioxidantes/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental , Feminino , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo
6.
Life Sci ; 91(11-12): 395-401, 2012 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-22906631

RESUMO

AIM: The dysregulation of regulatory element-binding protein-1c (SREBP-1c) is associated with hepatic steatosis. However, effects of exercise on SREBP-1c protein level in liver have not been investigated. Thus, in this study we investigated if reversion of the hepatic steatosis-induced by exercise training is related with levels of SREBP-1c. MAIN METHODS: Mice were divided into two groups: control lean mice (CT), fed on standard rodent chow, and obese mice (HF), fed on a high-fat diet for 2months. After this period obese mice were divided in two groups: obese mice and obese mice submitted to exercise (HF+EXE). The HF+EXE group performed a running program of 50min per day, 5days per week, for 8weeks. Forty-eight hours after the last exercise session, biochemical, immunoblotting, histology and immunohistochemistry analyses were performed. KEY FINDINGS: Livers of HF mice showed increased SREBP-1c, FAS (Fatty Acid Synthase), SCD1 (Stearoyl-CoA Desaturase1) and CPT1 (Carnitine Palmitoyl Transferase1) protein levels (3.4, 5.0, 2.6 and 2.9 times, respectively), though ACC (Acetyl-CoA Carboxilase) phosphorylation dropped 4.2 times. In livers of HF+EXE, levels of SREBP-1c, FAS, SCDI and CPTI decreased 2.1, 1.9, 1.8, and 2.7 times, respectively), while ACC phosphorylation increased 3.0 times. Lower SREBP-1c protein levels after exercise were confirmed also by immunohistochemistry. Total liver lipids content was higher in HF (2.2 times) when compared to CT, and exercise training reduced it significantly (1.7 times). SIGNIFICANCE: Our study allows concluding that the reduction in SREBP-1c protein levels is associated with steatosis reversion induced by exercise training.


Assuntos
Fígado Gorduroso/terapia , Camundongos Obesos/fisiologia , Condicionamento Físico Animal/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Acetil-CoA Carboxilase/análise , Animais , Carnitina O-Palmitoiltransferase/análise , Ácido Graxo Sintases/análise , Fígado Gorduroso/fisiopatologia , Fígado/química , Fígado/fisiopatologia , Masculino , Camundongos , Fosforilação , Estearoil-CoA Dessaturase/análise , Proteína de Ligação a Elemento Regulador de Esterol 1/análise
7.
Eur J Appl Physiol ; 111(9): 2015-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21249392

RESUMO

Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.


Assuntos
Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Tecido Adiposo/patologia , Animais , Terapia por Exercício , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , Masculino , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/terapia , Fosforilação , Ratos , Ratos Wistar , Natação/fisiologia
8.
Free Radic Res ; 43(10): 957-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19672741

RESUMO

Exercise training has demonstrated cardioprotection effects. However, the exact mechanism behind this effect is not is clear. The present study evaluated the effects of 12 weeks of previous treadmill training on the levels of oxidative damage, antioxidant enzyme activity and injury in the myocardium of rats submitted to infarction induced by isoproterenol (ISO). Isoproterenol treatment (80 mg/kg given over 2 days in two equal doses) caused arrhythmias and 60% mortality within 24 h of the last injection in the control group (C + ISO) group when compared with the saline control group (saline). Creatine Kinase--MB levels were markedly increased in hearts from ISO-treated animals in the C + ISO group. Twelve weeks of treadmill training reduced superoxide production, lipid peroxidation levels and protein carbonylation in these animals, as well as increasing the activities and expressions of SOD and CAT. Previous training also reduced CK-MB levels and numbers of deaths by 40%, preventing the deleterious effects of ISO. Based on the data obtained in this study, it is suggested that 12-week treadmill training increases antioxidant enzymes, decreases oxidative damage and reduces the degree of infarction induced by ISO in the hearts of male rats.


Assuntos
Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Condicionamento Físico Animal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Biomarcadores/sangue , Catalase/metabolismo , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Isoproterenol , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/enzimologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
9.
J Physiol ; 587(Pt 9): 2069-76, 2009 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273580

RESUMO

PGC-1alpha expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1alpha activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1alpha and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1alpha/Foxo1 association is unknown. Here we investigate the expression of PGC-1alpha and the association of PGC-1alpha/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1alpha expression and PGC-1alpha/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia.


Assuntos
Gorduras na Dieta/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Fígado/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Obesidade/fisiopatologia , Resistência Física , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Masculino , Obesidade/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...