Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 374: 109724, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35644105

RESUMO

Sour beers produced by barrel-aging of conventionally fermented beers are becoming increasingly popular. However, as the intricate interactions between the wood, the microbes and the beer are still unclear, wood maturation often leads to inconsistent end products with undesired sensory properties. Previous research on industrial barrel-aging of beer suggests that beer parameters like the ethanol content and bitterness play an important role in the microbial community composition and beer chemistry, but their exact impact still remains to be investigated. In this study, an experimentally tractable lab-scale system based on an in-vitro community of four key bacteria (Acetobacter malorum, Gluconobacter oxydans, Lactobacillus brevis and Pediococcus damnosus) and four key yeasts (Brettanomyces bruxellensis, Candida friedrichii, Pichia membranifaciens and Saccharomyces cerevisiae) that are consistently associated with barrel-aging of beer, was used to test the hypotheses that beer ethanol and bitterness impact microbial community composition and beer chemistry. Experiments were performed using different levels of ethanol (5.2 v/v%, 8 v/v% and 11 v/v%) and bitterness (13 ppm, 35 ppm and 170 ppm iso-α-acids), and beers were matured for 60 days. Samples were taken after 0, 10, 20, 30 and 60 days to monitor population densities and beer chemistry. Results revealed that all treatments and the maturation time significantly affected the microbial community composition and beer chemistry. More specifically, the ethanol treatments obstructed growth of L. brevis and G. oxydans and delayed fungal growth. The iso-α-acid treatments hindered growth of L. brevis and stimulated growth of P. membranifaciens, while the other strains remained unaffected. Beer chemistry was found to be affected by higher ethanol levels, which led to an increased extraction of wood-derived compounds. Furthermore, the distinct microbial communities also induced changes in the chemical composition of the beer samples, leading to concentration differences in beer- and wood-derived compounds like 4-ethyl guaiacol, 4-ethyl phenol, cis-oak lactone, vanillin, furfural and 5-hydroxymethyl furfural. Altogether, our results indicate that wood-aging of beer is affected by biotic and abiotic parameters, influencing the quality of the final product. Additionally, this work provides a new, cost-effective approach to study the production of barrel-aged beers based on a simplified microbial community model.


Assuntos
Cerveja , Microbiota , Cerveja/microbiologia , Etanol , Fermentação , Saccharomyces cerevisiae , Madeira
2.
Int J Food Microbiol ; 339: 109030, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387813

RESUMO

Currently, there is a strong interest in barrel ageing of finished, conventionally fermented beers, as a novel way to produce sour beers with a rich and complex flavour profile. The production process, however, remains largely a process of trial and error, often resulting in profit losses and inconsistency in quality. To improve product quality and consistency, a better understanding of the interactions between microorganisms, wood and maturing beer is needed. The aim of this study was to describe the temporal dynamics in microbial community composition, beer chemistry and sensory characteristics during barrel ageing of three conventionally fermented beers that differed in parameters like alcohol content and bitterness. Beers were matured for 38 weeks in new (two types of wood) and used (one type of wood) oak barrels. Beer samples were taken at the start of the maturation and after 2, 12 and 38 weeks. Microbial community composition, determined using amplicon sequencing of the V4 region of the bacterial 16S rRNA gene and the fungal ITS1 region, beer chemistry and sensory characteristics substantially changed throughout the maturation process. Likewise, total bacterial and fungal population densities generally increased during maturation. PerMANOVA revealed significant differences in the bacterial and fungal community composition of the three beers and across time points, but not between the different wood types. By contrast, significant differences in beer chemistry were found across the different beers, wood types and sampling points. Results also indicated that the outcome of the maturation process likely depends on the initial beer properties. Specifically, results suggested that beer bitterness may restrain the bacterial community composition, thereby having an impact on beer souring. While the bacterial community composition of moderately-hopped beers shifted to a dominance of lactic acid bacteria, the bacterial community of the high-bitterness beer remained fairly constant, with low population densities. Bacterial community composition of the moderate-bitterness beers also resembled those of traditional sours like lambic beers, hosting typical lambic brewing species like Pediococcus damnosus, Lactobacillus brevis and Acetobacter sp. Furthermore, results suggested that alcohol level may have affected the fungal community composition and extraction of wood compounds. More specifically, the concentration of wood compounds like cis-3-methyl-4-octanolide, trans-3-methyl-4-octanolide, eugenol and total polyphenols was higher in beers with a high alcohol content. Altogether, our results provide novel insights into the barrel ageing process of beer, and may pave the way for a new generation of sour beers.


Assuntos
Bactérias/classificação , Bactérias/genética , Cerveja/microbiologia , Microbiologia de Alimentos , Microbiota , Biodiversidade , Fermentação , Aromatizantes , Pediococcus , Polifenóis/análise , RNA Ribossômico 16S/genética , Paladar , Fatores de Tempo
3.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414797

RESUMO

Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods. These include poor process control, lack of consistency in product quality, and lengthy fermentation times. This review summarizes the methods for traditional sour beer production with a focus on the use of lactobacilli to generate this beverage. In addition, the review describes the use of selected pure cultures of microorganisms with desirable properties in conjunction with careful application of processing steps. Together, this facilitates the production of sour beer with a higher level of process control and more rapid fermentation compared to traditional methods.


Assuntos
Cerveja/microbiologia , Fermentação , Microbiologia de Alimentos/métodos , Lactobacillales/fisiologia , Paladar
4.
Front Microbiol ; 11: 279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153550

RESUMO

Increasing popularity of sour beer urges the development of novel solutions for controlled fermentations both for fast acidification and consistency in product flavor and quality. One possible approach is the use of Saccharomyces cerevisiae in co-fermentation with Lactobacillus species, which produce lactic acid as a major end-product of carbohydrate catabolism. The ability of lactobacilli to ferment beer is determined by their capacity to sustain brewing-related stresses, including hop iso-α acids, low pH and ethanol. Here, we evaluated the tolerance of Lactobacillus brevis BSO464 and Lactobacillus buchneri CD034 to beer conditions and different fermentation strategies as well as their use in the brewing process in mixed fermentation with a brewer's yeast, S. cerevisiae US-05. Results were compared with those obtained with a commercial Lactobacillus plantarum (WildBrewTM Sour Pitch), a strain commonly used for kettle souring. In pure cultures, the three strains showed varying susceptibility to stresses, with L. brevis being the most resistant and L. plantarum displaying the lowest stress tolerance. When in co-fermentation with S. cerevisiae, both L. plantarum and L. brevis were able to generate sour beer in as little as 21 days, and their presence positively influenced the composition of flavor-active compounds. Both sour beers were sensorially different from each other and from a reference beer fermented by S. cerevisiae alone. While the beer produced with L. plantarum had an increased intensity in fruity odor and dried fruit odor, the L. brevis beer had a higher total flavor intensity, acidic taste and astringency. Remarkably, the beer generated with L. brevis was perceived as comparable to a commercial sour beer in multiple sensory attributes. Taken together, this study demonstrates the feasibility of using L. brevis BSO464 and L. plantarum in co-fermentation with S. cerevisiae for controlled sour beer production with shortened production time.

5.
J Chromatogr A ; 1612: 460647, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-31767258

RESUMO

Aldehydes originating from malt play an important role in beer flavour deterioration. In order to better understand the influence of malting process on beer staling, it is necessary to acquire a reliable analytical methodology for determination of beer staling aldehydes in malt. Therefore, the aim of this study was to evaluate extraction parameters, which allow quantification of beer staling aldehydes present in pale malts. The method was validated with respect to linearity (R > 0.9988), limit of detection (0.28 - 0.99 µg/L), limit of quantification (0.92 - 3.31 µg/L), accuracy (± 5%), repeatability (1.3 - 5.3%) and intermediate precision (>20%). The following parameters of sample preparation were evaluated: sample amount, extraction time and temperature, ultrasonication time and oxygen level. Consequently, the best extraction conditions were successfully applied on pale malts. After extraction, the samples were analysed by headspace solid-phase microextraction (HS-SPME) with on fibre carbonyl derivatisation followed by gas chromatography and mass spectrometry (GC-MS). In addition, the salting-out effect during HS-SPME was studied. The method application allowed to identify significant differences (p ≤ 0.05) in the levels of aldehydes among various industrial scale, pale malts. The optimised method could give the information on the aldehyde content introduced into the brewing process and its potential contribution to the overall beer quality.


Assuntos
Aldeídos/análise , Cerveja/análise , Aromatizantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Aldeídos/isolamento & purificação , Aromatizantes/isolamento & purificação
6.
J Sci Food Agric ; 99(5): 2165-2174, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30302771

RESUMO

BACKGROUND: Beer flavor stability is important to brewers as a result of the increased global demand for beer. Increasing export leads to prolonged periods of transportation and storage and causes fresh flavor deterioration. Therefore, the present study examined the effect of different temperatures in combination with vibrations on beer quality. Beer was exposed to vibrations (50 Hz, 15 m s-2 , simulating transport) at 5, 30 and 45 °C for 22, 38 and 90 h and (for half the samples) aged for 60 days at 30 °C. RESULTS: The results obtained indicated decreased oxygen concentrations as a result of an elevated temperature and vibrations. There was no effect (P > 0.05) on color and a limited effect of temperature and vibrations on iso-α-acids. The parameters temperature and vibrations have a significant influence (P < 0.05) on aldehyde concentrations, namely total aldehydes, and especially '2-methylpropanal', '2-methylbutanal' and 'furfural'. CONCLUSION: The impact of vibrations on the aldehydes concentrations was substantial when subjected to an elevated temperature. Furthermore, a forced aging test of shorter duration than traditional methods might be developed. © 2018 Society of Chemical Industry.


Assuntos
Cerveja/análise , Aromatizantes/análise , Aldeídos/análise , Cor , Humanos , Veículos Automotores , Paladar , Temperatura , Fatores de Tempo , Vibração
7.
Appl Environ Microbiol ; 81(23): 8202-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407881

RESUMO

Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.


Assuntos
Cerveja/análise , Hibridização Genética , Saccharomyces/genética , Saccharomyces/metabolismo , Fermentação , Variação Genética , Odorantes/análise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...