Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 20: 177-187, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094167

RESUMO

Studies on athletes or neurological patients with motor disorders have shown a close link between motor experience and motor imagery skills. Here we evaluated whether a functional limitation due to a musculoskeletal disorder has an impact on the ability to mentally rehearse the motor patterns of walking, an overlearned and highly automatic behaviour. We assessed the behavioural performance (measured through mental chronometry tasks) and the neural signatures of motor imagery of gait in patients with chronic knee arthrosis and in age-matched, healthy controls. During fMRI, participants observed (i) stationary or (ii) moving videos of a path in a park shown in the first-person perspective: they were asked to imagine themselves (i) standing on or (ii) walking along the path, as if the camera were "their own eyes" (gait imagery (GI) task). In half of the trials, participants performed a dynamic gait imagery (DGI) task by combining foot movements with GI. Behavioural tests revealed a lower degree of isochrony between imagined and performed walking in the patients, indicating impairment in the ability to mentally rehearse gait motor patterns. Moreover, fMRI showed widespread hypoactivation during GI in motor planning (premotor and parietal) brain regions, the brainstem, and the cerebellum. Crucially, the performance of DGI had a modulatory effect on the patients and enhanced activation of the posterior parietal, brainstem, and cerebellar regions that the healthy controls recruited during the GI task. These findings show that functional limitations of peripheral origin may impact on gait motor representations, providing a rationale for cognitive rehabilitation protocols in patients with gait disorders of orthopaedic nature. The DGI task may be a suitable tool in this respect.


Assuntos
Encéfalo/diagnóstico por imagem , Marcha/fisiologia , Imaginação/fisiologia , Extremidade Inferior , Limitação da Mobilidade , Estimulação Luminosa/métodos , Idoso , Encéfalo/fisiopatologia , Feminino , Humanos , Extremidade Inferior/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Desempenho Psicomotor/fisiologia
2.
Hum Brain Mapp ; 38(10): 5195-5216, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28731517

RESUMO

Gait imagery and gait observation can boost the recovery of locomotion dysfunctions; yet, a neurologically justified rationale for their clinical application is lacking as much as a direct comparison of their neural correlates. Using functional magnetic resonance imaging, we measured the neural correlates of explicit motor imagery of gait during observation of in-motion videos shot in a park with a steady cam (Virtual Walking task). In a 2 × 2 factorial design, we assessed the modulatory effect of gait observation and of foot movement execution on the neural correlates of the Virtual Walking task: in half of the trials, the participants were asked to mentally imitate a human model shown while walking along the same route (mental imitation condition); moreover, for half of all the trials, the participants also performed rhythmic ankle dorsiflexion as a proxy for stepping movements. We found that, beyond the areas associated with the execution of lower limb movements (the paracentral lobule, the supplementary motor area, and the cerebellum), gait imagery also recruited dorsal premotor and posterior parietal areas known to contribute to the adaptation of walking patterns to environmental cues. When compared with mental imitation, motor imagery recruited a more extensive network, including a brainstem area compatible with the human mesencephalic locomotor region (MLR). Reduced activation of the MLR in mental imitation indicates that this more visually guided task poses less demand on subcortical structures crucial for internally generated gait patterns. This finding may explain why patients with subcortical degeneration benefit from rehabilitation protocols based on gait observation. Hum Brain Mapp 38:5195-5216, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Marcha/fisiologia , Imaginação/fisiologia , Percepção de Movimento/fisiologia , Idoso , Análise de Variância , Tornozelo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Pé/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Realidade Virtual
3.
Behav Brain Res ; 303: 137-51, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851363

RESUMO

Motor imagery (M.I.) is a cognitive process in which movements are mentally evoked without overt actions. Behavioral and fMRI studies show a decline of explicit M.I. ability (e.g., the mental rehearsal of finger oppositions) with normal ageing: this decline is accompanied by the recruitment of additional cortical networks. However, none of these studies investigated behavioral and the related fMRI ageing modifications in implicit M.I. tasks, like the hand laterality task (HLT). To address this issue, we performed a behavioral and fMRI study: 27 younger subjects (mean age: 31 years) and 29 older subjects (mean age: 61 years) underwent two event-related design fMRI experiments. In the HLT, participants were asked to decide whether a hand rotated at different angles was a left or right hand. To test the specificity of any age related difference in the HLT, we used a letter rotation task as a control experiment: here subjects had to decide whether rotated letters were presented in a standard or a mirror orientation. We did not find any group difference in either behavioral task; however, we found significant additional neural activation in the elderly group in occipito-temporal regions: these differences were stronger for the HLT rather than for the LRT with group by task interactions effects in right occipital cortices. We interpret these results as evidence of compensatory processes associated with ageing that permit a behavioral performance comparable to that of younger subjects. This process appears to be more marked when the task specifically involves motor representations, even when these are implicitly evoked.


Assuntos
Envelhecimento , Encéfalo/fisiologia , Imaginação/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...