Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 118: 44-47, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29793115

RESUMO

The EU Commission Ecolabel and the Product and Environmental Footprint (PEF) aim at promoting the development and consumption of greener products. The product aquatic toxicity score from these 2 methods may lead in some circumstances to opposite conclusions. Although this could be interpreted as an inconsistency, the score should not be compared to each other but used in a complementary way. In short, CDV provided a "full" product formula aquatic toxicity score, even if some chemicals may never reach or persist in freshwater ecosystems. The USEtox® score, by integrating fate and exposure, focuses on the potential toxicity of persistent-water-soluble chemicals at steady state. Since no risk or safety assessment can be conducted with USEtox® nor with the CDV, both are a hazard-based scoring system. This short communication clarifies the difference between approaches underpinning the toxicity scores used in Ecolabel and PEF, providing guidance on how to interpret the results.


Assuntos
Monitoramento Ambiental/métodos , Medição de Risco/métodos , Poluentes Químicos da Água , União Europeia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 49(3): 1495-500, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25551400

RESUMO

Increasing CO2 atmospheric levels lead to increasing ocean acidification, thereby enhancing calcium carbonate dissolution of calcifying species. We gathered peer-reviewed experimental data on the effects of acidified seawater on calcifying species growth, reproduction, and survival. The data were used to derive species-specific median effective concentrations, i.e., pH50, and pH10, via logistic regression. Subsequently, we developed species sensitivity distributions (SSDs) to assess the potentially affected fraction (PAF) of species exposed to pH declines. Effects on species growth were observed at higher pH than those on species reproduction (mean pH10 was 7.73 vs 7.63 and mean pH50 was 7.28 vs 7.11 for the two life processes, respectively) and the variability in the sensitivity of species increased with increasing number of species available for the PAF (pH10 standard deviation was 0.20, 0.21, and 0.33 for survival, reproduction, and growth, respectively). The SSDs were then applied to two climate change scenarios to estimate the increase in PAF (ΔPAF) by future ocean acidification. In a high CO2 emission scenario, ΔPAF was 3 to 10% (for pH50) and 21 to 32% (for pH10). In a low emission scenario, ΔPAF was 1 to 4% (for pH50) and 7 to 12% (for pH10). Our SSDs developed for the effect of decreasing ocean pH on calcifying marine species assemblages can also be used for comparison with other environmental stressors.


Assuntos
Carbonato de Cálcio/química , Dióxido de Carbono/química , Mudança Climática , Invertebrados , Modelos Teóricos , Água do Mar/química , Animais , Concentração de Íons de Hidrogênio , Invertebrados/crescimento & desenvolvimento , Invertebrados/fisiologia , Oceanos e Mares , Reprodução , Especificidade da Espécie
3.
Environ Sci Technol ; 45(1): 70-9, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21047114

RESUMO

Halting current rates of biodiversity loss will be a defining challenge of the 21st century. To assess the effectiveness of strategies to achieve this goal, indicators and tools are required that monitor the driving forces of biodiversity loss, the changing state of biodiversity, and evaluate the effectiveness of policy responses. Here, we review the use of indicators and approaches to model biodiversity loss in Life Cycle Assessment (LCA), a methodology used to evaluate the cradle-to-grave environmental impacts of products. We find serious conceptual shortcomings in the way models are constructed, with scale considerations largely absent. Further, there is a disproportionate focus on indicators that reflect changes in compositional aspects of biodiversity, mainly changes in species richness. Functional and structural attributes of biodiversity are largely neglected. Taxonomic and geographic coverage remains problematic, with the majority of models restricted to one or a few taxonomic groups and geographic regions. On a more general level, three of the five drivers of biodiversity loss as identified by the Millennium Ecosystem Assessment are represented in current impact categories (habitat change, climate change and pollution), while two are missing (invasive species and overexploitation). However, methods across all drivers can be greatly improved. We discuss these issues and make recommendations for future research to better reflect biodiversity loss in LCA.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Meio Ambiente , Dinâmica Populacional , Padrões de Referência
4.
Environ Sci Technol ; 43(6): 1689-95, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368158

RESUMO

Human and ecosystem health damage due to greenhouse gas (GHG) emissions is generally poorly quantified in the life cycle assessment of products, preventing an integrated comparison of the importance of GHGs with other stressor types, such as ozone depletion and acidifying emissions. In this study, we derived new characterization factors for 63 GHGs that quantify the impact of an emission change on human and ecosystem health damage. For human health damage, the Disability Adjusted Life Years (DALYs) per unit emission related to malaria, diarrhea, malnutrition, drowning, and cardiovascular diseases were quantified. For ecosystem health damage, the Potentially Disappeared Fraction (PDF) over space and time of various species groups, including plants, butterflies, birds, and mammals, per unit emission was calculated. The influence of value choices in the modeling procedure was analyzed by defining three coherent scenarios, based on Cultural theory perspectives. It was found that the characterization factor for human health damage by carbon dioxide (CO2) ranges from 1.1 x 10(-2) to 1.8 x 10(+1) DALY per kton of emission, while the characterization factor for ecosystem damage by CO2 ranges from 5.4 x 10(-2) to 1.2 x 10(+1) disappeared fraction of species over space and time ((km2 x year)/kton), depending on the scenario chosen. The characterization factor of a GHG can change up to 4 orders of magnitude, depending on the scenario. The scenario-specific differences are mainly explained by the choice for a specific time horizon and stresses the importance of dealing with value choices in the life cycle impact assessment of GHG emissions.


Assuntos
Doenças Transmissíveis/epidemiologia , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Efeito Estufa , Extinção Biológica , Saúde Global , Humanos , Modelos Teóricos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...