Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(41): 23666-23677, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530589

RESUMO

Contemporary studies of self-healing polymer composites are based on microcapsules synthesized using synthetic and toxic polymers, biopolymers, etc. via methods such as in situ polymerization, electrospraying, and air atomization. Herein, we synthesized a healing agent, epoxy (EPX) encapsulated calcium carbonate (CC) microcapsules, which was used to prepare self-healing EPX composites as a protective coating for metals. The CC microcapsules were synthesized using two facile methods, namely, the soft-template method (STM) and the in situ emulsion method (EM). Microcapsules prepared using the STM (ST-CC) were synthesized using sodium dodecyl sulphate (SDS) surfactant micelles as the soft-template, while the microcapsules prepared using the EM (EM-CC) were synthesized in an oil-in-water (O/W) in situ emulsion. These prepared CC microcapsules were characterized using light microscopy (LMC), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermogravimetric analysis (TGA). The synthesized ST-CC microcapsules were spherical in shape, with an average diameter of 2.5 µm and an average shell wall thickness of 650 nm, while EM-CC microcapsules had a near-spherical shape with an average diameter of 3.4 µm and an average shell wall thickness of 880 nm. The ST-CC capsules exhibited flake-like rough surfaces while EM-CC capsules showed smooth bulgy surfaces. The loading capacity of ST-CC and EM-CC microcapsules were estimated using TGA and found to be 11% and 36%, respectively. The FTIR and NMR spectra confirmed the EPX encapsulation and the unreactive nature of the loaded EPX with the inner walls of CC microcapsules. The synthesized CC microcapsules were further incorporated into an EPX matrix to prepare composite coatings with 10 (w/w%), 20 (w/w%), and 50 (w/w%) capsule loadings. The prepared EPX composite coatings were scratched and observed using FE-SEM and LMC to evaluate the release of encapsulated EPX inside the CC capsules, which is analogous to the healing behaviour. Moreover, EPX composite coatings with 20 (w/w%) and 50 (w/w%) of ST-CC showed better healing performances. Thus, it was observed that ST-CC microcapsules outperformed EM-CC. Additionally, the EPX/CC coatings showed remarkable self-healing properties by closing the gaps of the scratch surfaces. Thus, these formaldehyde-free, biocompatible, biodegradable, and non-toxic CC based EPX composite coatings hold great potential to be used as a protective coating for metal substrates. Primary results detected significant corrosion retardancy due to the self-healing coatings under an accelerated corrosion process, which was performed with a salt spray test.

2.
ACS Appl Mater Interfaces ; 10(40): 33913-33922, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30220194

RESUMO

Halloysite nanotube (HNT)-reinforced alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning to mimic the natural extracellular matrix (ECM) structure which is beneficial for tissue regeneration. An antiseptic drug, cephalexin (CEF)-loaded HNT, was incorporated into the alginate-based matrix to obtain sustained antimicrobial protection and robust mechanical properties, the key criteria for tissue engineering applications. Electron microscopic imaging and drug release studies revealed that CEF had penetrated into the lumen space of the HNT and also deposited on the outer walls, with a total loading capacity of 30 wt %. Moreover, the diameter of alginate-based nanofibers of the scaffolds ranged from 40 to 522 nm with well-aligned HNTs, resulting in superior mechanical properties. For instance, the addition of 5% (w/w) HNT improved the tensile strength (σ) and elastic modulus by 3-fold and 2-fold, respectively, compared to those of the alginate-based scaffolds without HNT. The fabricated scaffolds exhibited remarkable antimicrobial properties against both Gram-negative and Gram-positive bacteria, and the cytotoxicity studies confirmed the nontoxicity of the fabricated scaffolds. Drug release kinetics showed that CEF inside HNTs diffuses within 24 h and that the diffusion of the drug is delayed by 7 days once the CEF-loaded HNTs are incorporated into the alginate-based nanofibers. These fabricated alginate-based electrospun scaffolds with enhanced mechanical properties and sustained antimicrobial protection hold great potential to be used as artificial ECM scaffolds for tissue engineering applications.


Assuntos
Alginatos/química , Antibacterianos , Bactérias/crescimento & desenvolvimento , Cefalexina , Argila/química , Nanofibras/química , Nanotubos/química , Alicerces Teciduais/química , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Linhagem Celular , Cefalexina/química , Cefalexina/farmacocinética , Preparações de Ação Retardada/química , Camundongos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...