Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(8)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132515

RESUMO

Dental resin composites (DRCs) have gained immense popularity as filling material in direct dental restorations. They are highly valued for their ability to closely resemble natural teeth and withstand harsh oral conditions. To increase the clinical performance of dental restorations, various fillers are incorporated into DRCs. Herein, the effect of incorporating pre-polymerized triethylene glycol dimethacrylate (P-TEGDMA) as a co-filler in varying proportions (0%, 2.5%, 5%, and 10% by weight) into bisphenol A-glycidyl methacrylate (BisGMA)/TEGDMA/SiO2 resin composite was investigated. The obtained DRCs were examined for morphology, rheological properties, degree of crosslinking (DC), Vickers microhardness (VMH), thermal stability, and flexural strength (FS). The results revealed that SiO2 and P-TEGDMA particles were uniformly dispersed. The introduction of P-TEGDMA particles (2.5 wt.%) into the resin composite had a remarkable effect, leading to a significant reduction (p ≤ 0.05) in complex viscosity, decreasing from 393.84 ± 21.65 Pa.s to 152.84 ± 23.94 Pa.s. As a result, the DC was significantly (p ≤ 0.05) improved from 61.76 ± 3.80% to 68.77 ± 2.31%. In addition, the composite mixture demonstrated a higher storage modulus (G') than loss modulus (G″), indicative of its predominantly elastic nature. Moreover, the thermal stability of the DRCs was improved with the addition of P-TEGDMA particles by increasing the degradation temperature from 410 °C to 440 °C. However, the VMH was negatively affected. The study suggests that P-TEGDMA particles have the potential to be used as co-fillers alongside other inorganic fillers, offering a means to fine-tune the properties of DRCs and optimize their clinical performance.

2.
Biomimetics (Basel) ; 8(7)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999152

RESUMO

A new eugenyl dimethacrylated monomer (symbolled BisMEP) has recently been synthesized. It showed promising viscosity and polymerizability as resin for dental composite. As a new monomer, BisMEP must be assessed further; thus, various physical, chemical, and mechanical properties have to be investigated. In this work, the aim was to investigate the potential use of BisMEP in place of the BisGMA matrix of resin-based composites (RBCs), totally or partially. Therefore, a list of model composites (CEa0, CEa25, CEa50, and CEa100) were prepared, which made up of 66 wt% synthesized silica fillers and 34 wt% organic matrices (BisGMA and TEGDMA; 1:1 wt/wt), while the novel BisMEP monomer has replaced the BisGMA content as 0.0, 25, 50, and 100 wt%, respectively. The RBCs were analyzed for their degree of conversion (DC)-based depth of cure at 1 and 2 mm thickness (DC1 and DC2), Vickers hardness (HV), water uptake (WSP), and water solubility (WSL) properties. Data were statistically analyzed using IBM SPSS v21, and the significance level was taken as p < 0.05. The results revealed no significant differences (p > 0.05) in the DC at 1 and 2 mm depth for the same composite. No significant differences in the DC between CEa0, CEa25, and CEa50; however, the difference becomes substantial (p < 0.05) with CEa100, suggesting possible incorporation of BisMEP at low dosage. Furthermore, DC1 for CEa0-CEa50 and DC2 for CEa0-CEa25 were found to be above the proposed minimum limit DC of 55%. Statistical analysis of the HV data showed no significant difference between CEa0, CEa25, and CEa50, while the difference became statistically significant after totally replacing BisGMA with BisMEP (CEa100). Notably, no significant differences in the WSP of various composites were detected. Likewise, WSL tests revealed no significant differences between such composites. These results suggest the possible usage of BisMEP in a mixture with BisGMA with no significant adverse effect on the DC, HV, WSP, and degradation (WSL).

3.
Biomimetics (Basel) ; 8(4)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37622952

RESUMO

This study aimed to determine the reinforcing effect of two weight ratios of Gum Arabic (GA) natural biopolymer, i.e., 0.5% and 1.0% in the powdered composition of glass ionomer luting cement. GA powder was oxidized and GA-reinforced GIC in 0.5 and 1.0 wt.% formulations were prepared in rectangular bars using two commercially available GIC luting materials (Medicem and Ketac Cem Radiopaque). The control groups of both materials were prepared as such. The effect of reinforcement was evaluated in terms of microhardness, flexural strength (FS), fracture toughness (FT), and tensile strength (TS). The internal porosity and water contact angle formation on the study samples were also evaluated. Film thickness was measured to gauge the effect of micron-sized GA powder in GA-GIC composite. Paired sample t-tests were conducted to analyze data for statistical significance (p < 0.05). The experimental groups of both materials containing 0.5 wt.% GA-GIC significantly improved FS, FT, and TS compared to their respective control groups. However, the microhardness significantly decreased in experimental groups of both cements compared to their respective control groups. The addition of GA powder did not cause a significant increase in film thickness and the water contact angle of both 0.5 and 1.0 wt.% GA-GIC formulations were less than 90o. Interestingly, the internal porosity of 0.5 wt.% GA-GIC formulations in both materials were observed less compared to their respective control groups. The significantly higher mechanical properties and low porosity in 0.5 wt.% GA-GIC formulations compared to their respective control group indicate that reinforcing GA powder with 0.5 wt.% in GIC might be promising in enhancing the mechanical properties of GIC luting materials.

4.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514457

RESUMO

BACKGROUND: One of the crucial factors influencing the longevity of anterior aesthetic dental restorations is the colour stability of resin composites. Bleaching and whitening have become popular methods for enhancing dental aesthetics. Home whitening techniques, such as special pens, are widely available commercially. This in vitro study aimed to determine the efficiency of a whitening pen in removing tea stains from resin composite by measuring colour differences (ΔE00). Additionally, the study aimed to evaluate the variations in colour parameters measured by extra-oral and intra-oral spectrophotometers. METHODS: A total of 45 disc-shaped resin composite specimens were randomly divided into three groups; Group 1: stored in artificial saliva (control), Group 2: stored in artificial saliva followed by a whitening pen application, and Group 3: stored in tea followed by a whitening pen application. Colour measurements were taken three times for each specimen using two spectrophotometers (extra-oral and intra-oral devices); T1: before storage (baseline), T2: after storage in artificial saliva or tea for 6 days; and T3: after one week of whitening pen application in groups 2 and 3. The data were statistically analyzed using one-way ANOVA followed by the Tukey post hoc test (p ≤ 0.05). The independent sample t-test was also employed. The equation of CIEDE2000 (ΔE00) was used to calculate the colour difference between the dry, as-prepared specimens (baseline), and those after storage or bleaching. The colour changes exceeding the acceptability threshold (∆E00 = 1.8) were considered unacceptable. RESULTS: After whitening, the colour of the specimens stored in brewed tea (Group 3) remained unacceptable, as indicated by both the extra-oral and intra-oral spectrophotometers (ΔE00 = 4 and 2.9, respectively). Groups 1 and 2 exhibited lower ΔE00 values than Group 3 (p = 0.01 *). No significant difference was observed between Group 1 (stored in artificial saliva) and Group 2 (stored in artificial saliva and then bleached) (p = 0.3). Significant differences were consistently observed between the data obtained from the extra-oral spectrophotometer and the intra-oral one. CONCLUSIONS: The whitening pen proved ineffective in removing tea stains from resin composites. Although significant differences were found between the values obtained by the two spectrophotometers (extra-oral and intra-oral), both devices confirmed the unacceptable colour of the tea-stained resin composites after whitening.

5.
J Funct Biomater ; 14(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367287

RESUMO

Resin composite mimics tooth tissues both in structure and properties, and thus, they can withstand high biting force and the harsh environmental conditions of the mouth. Various inorganic nano- and micro-fillers are commonly used to enhance these composites' properties. In this study, we adopted a novel approach by using pre-polymerized bisphenol A-glycidyl methacrylate (BisGMA) ground particles (XL-BisGMA) as fillers in a BisGMA/triethylene glycol dimethacrylate (TEGDMA) resin system in combination with SiO2 nanoparticles. The BisGMA/TEGDMA/SiO2 mixture was filled with various concentrations of XL-BisGMA (0, 2.5, 5, and 10 wt.%). The XL-BisGMA added composites were evaluated for viscosity, degree of conversion (DC), microhardness, and thermal properties. The results demonstrated that the addition of a lower concentration of XL-BisGMA particles (2.5 wt.%) significantly reduced (p ≤ 0.05) the complex viscosity from 374.6 (Pa·s) to 170.84. (Pa·s). Similarly, DC was also increased significantly (p ≤ 0.05) by the addition of 2.5 wt.% XL-BisGMA, with the pristine composite showing a DC of (62.19 ± 3.2%) increased to (69.10 ± 3.4%). Moreover, the decomposition temperature has been increased from 410 °C for the pristine composite (BT-SB0) to 450 °C for the composite with 10 wt.% of XL-BisGMA (BT-SB10). The microhardness has also been significantly reduced (p ≤ 0.05) from 47.44 HV for the pristine composite (BT-SB0) to 29.91 HV for the composite with 2.5 wt.% of XL-BisGMA (BT-SB2.5). These results suggest that a XL-BisGMA could be used to a certain percentage as a promising filler in combination with inorganic fillers to enhance the DC and flow properties of the corresponding resin-based dental composites.

6.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904361

RESUMO

The aim of this work was to assess the limiting rate of eugenol (Eg) and eugenyl-glycidyl methacrylate (EgGMA) at which the ideal degree of conversion (DC) of resin composites is achieved. For this, two series of experimental composites, containing, besides reinforcing silica and a photo-initiator system, either EgGMA or Eg molecules at 0-6.8 wt% per resin matrix, principally consisting of urethane dimethacrylate (50 wt% per composite), were prepared and denoted as UGx and UEx, where x refers to the EgGMA or Eg wt% in the composite, respectively. Disc-shaped specimens (5 × 1 mm) were fabricated, photocured for 60 s, and analyzed for their Fourier transform infrared spectra before and after curing. The results revealed concentration-dependent DC, increased from 56.70% (control; UG0 = UE0) to 63.87% and 65.06% for UG3.4 and UE0.4, respectively, then dramatically decreased with the concentration increase. The insufficiency in DC due to EgGMA and Eg incorporation, i.e., DC below the suggested clinical limit (>55%), was observed beyond UG3.4 and UE0.8. The mechanism behind such inhibition is still not fully determined; however, radicals generated by Eg may drive its free radical polymerization inhibitory activity, while the steric hindrance and reactivity of EgGMA express its traced effect at high percentages. Therefore, while Eg is a severe inhibitor for radical polymerization, EgGMA is safer and can be used to benefit resin-based composites when used at a low percentage per resin.

7.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408812

RESUMO

A series of poly(ethylene-co-vinyl alcohol)/titanium dioxide (PEVAL/TiO2) nanocomposites containing 1, 2, 3, 4 and 5 wt% TiO2 were prepared by the solvent casting method. These prepared hybrid materials were characterized by Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The pores and their interconnections inside these nanocomposites were created using naphthalene microparticles used as a porogen after having been extracted by sublimation under a high vacuum at temperatures slightly below the glass transition temperature. A cellular activity test of these hybrid materials was performed on human gingival fibroblast cells (HGFs) in accordance with ISO 10993-5 and ISO 10993-12 standards. The bioviability (cell viability) of HGFs was evaluated after 1, 4 and 7 days using Alamar Blue®. The results were increased cell activity throughout the different culture times and a significant increase in cell activity in all samples from Day 1 to Day 7, and all systems tested showed significantly higher cell viability than the control group on Day 7 (p < 0.002). The adhesion of HGFs to the scaffolds studied by SEM showed that HGFs were successfully cultured on all types of scaffolds.


Assuntos
Nanocompostos , Engenharia Tecidual , Etilenos , Humanos , Nanocompostos/química , Polietileno , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Titânio/química , Titânio/farmacologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...