Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37858304

RESUMO

MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.


Assuntos
Infecções por Klebsiella , MicroRNAs , Animais , Camundongos , Lipopolissacarídeos , Klebsiella/genética , Inflamação , Klebsiella pneumoniae/fisiologia , Citocinas , Infecções por Klebsiella/microbiologia , MicroRNAs/genética , Camundongos Endogâmicos C57BL
2.
iScience ; 26(7): 107181, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37496676

RESUMO

Neutrophils are potent immune cells with key antimicrobial functions. Previous in vitro work has shown that neutrophil effector functions are mainly fueled by intracellular glycolysis. Little is known about the state of neutrophils still in the circulation in patients during infection. Here, we combined flow cytometry, stimulation assays, transcriptomics, and metabolomics to investigate the link between inflammatory and metabolic pathways in blood neutrophils of patients with community-acquired pneumonia. Patients' neutrophils, relative to neutrophils from age- and sex- matched controls, showed increased degranulation upon ex vivo stimulation, and portrayed distinct upregulation of inflammatory transcriptional programs. This neutrophil phenotype was accompanied by a high-energy state with increased intracellular ATP content, and transcriptomic and metabolic upregulation of glycolysis and glycogenolysis. One month after hospital admission, these metabolic and transcriptomic changes were largely normalized. These data elucidate the molecular programs that underpin a balanced, yet primed state of blood neutrophils during pneumonia.

3.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36535641

RESUMO

Hypoxia-inducible factor (HIF)1α is a transcription factor involved in cellular metabolism and regulation of immune cell effector functions. Here, we studied the role of HIF1α in myeloid cells during pneumonia caused by the major causative pathogen, Streptococcus pneumoniae (Spneu). Mice deficient for HIF1α in myeloid cells (LysMcreHif1αfl/fl) were generated to study the in vitro responsiveness of bone marrow-derived macrophages (BMDMs) and alveolar macrophages (AMs) to the Gram-positive bacterial wall component lipoteichoic acid (LTA) and heat-killed Spneu, and the in vivo host response after infection with Spneu via the airways. Both BMDMs and AMs released more lactate upon stimulation with LTA or Spneu, indicative of enhanced glycolysis; HIF1α-deficiency in these cells was associated with diminished lactate release. In BMDMs, HIF1α-deficiency resulted in reduced secretion of tumor necrosis factor (TNF)α and interleukin (IL)-6 upon activation with Spneu but not LTA, while HIF1α-deficient AMs secreted less TNFα and IL-6 in response to LTA, and TNFα after Spneu stimulation. However, no difference was found in the host response of LysMcreHif1αfl/fl mice after Spneu infection as compared to controls. Similar in vivo findings were obtained in neutrophil (Mrp8creHif1αfl/fl) HIF1α-deficient mice. These data suggest that myeloid HIF1α is dispensable for the host defense during pneumococcal pneumonia.


Assuntos
Pneumonia Pneumocócica , Animais , Camundongos , Hipóxia , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae , Fator de Necrose Tumoral alfa
4.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203480

RESUMO

Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.


Assuntos
Klebsiella , Pneumonia , Humanos , Flagelina/farmacologia , Meropeném/farmacologia , Células Epiteliais , Antibacterianos/farmacologia
5.
Front Mol Biosci ; 10: 1265455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268724

RESUMO

The anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M. Surface 1, with central residue Trp74, binds to MyD88/IRAK-4. Surface 2, with central Lys60, associates with other IRAK-M DDs to form an IRAK-M homotetramer under the MyD88/IRAK-4 scaffold. Surface 3; with central residue Arg97 is located on the opposite side of Trp74 in the IRAK-M DD tetramer, lacks any interaction points with the MyD88/IRAK-4 complex. Although the IRAK-M DD residue Arg97 is not directly involved in the association with MyD88/IRAK-4, Arg97 was responsible for 50% of the NF-κB activation though the MyD88/IRAK-4/IRAK-M myddosome. Arg97 was also found to be pivotal for IRAK-M's interaction with IRAK-1, and important for IRAK-M's interaction with TRAF6. Residue Arg97 was responsible for 50% of the NF-κB generated by MyD88/IRAK-4/IRAK-M myddosome in IRAK-1/MEKK3 double knockout cells. By structural modeling we found that the IRAK-M tetramer surface around Arg97 has excellent properties that allow formation of an IRAK-M homo-octamer. This model explains why mutation of Arg97 results in an IRAK-M molecule with increased inhibitory properties: it still binds to myddosome, competing with myddosome IRAK-1 binding, while resulting in less NF-κB formation. The findings further identify the structure-function properties of IRAK-M, which is a potential therapeutic target in inflammatory disease.

6.
Respir Res ; 23(1): 241, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096803

RESUMO

BACKGROUND: Liver kinase B1 (Lkb1, gene name Stk11) functions as a tumor suppressor in cancer. Myeloid cell Lkb1 potentiates lung inflammation induced by the Gram-negative bacterial cell wall component lipopolysaccharide and in host defense during Gram-negative pneumonia. Here, we sought to investigate the role of myeloid Lkb1 in lung inflammation elicited by the Gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during pneumonia caused by the Gram-positive respiratory pathogen Streptococcus pneumoniae (Spneu). METHODS: Alveolar and bone marrow derived macrophages (AMs, BMDMs) harvested from myeloid-specific Lkb1 deficient (Stk11-ΔM) and littermate control mice were stimulated with LTA or Spneu in vitro. Stk11-ΔM and control mice were challenged via the airways with LTA or infected with Spneu in vivo. RESULTS: Lkb1 deficient AMs and BMDMs produced less tumor necrosis factor (TNF)α upon activation by LTA or Spneu. During LTA-induced lung inflammation, Stk11-ΔM mice had reduced numbers of AMs in the lungs, as well as diminished cytokine release and neutrophil recruitment into the airways. During pneumonia induced by either encapsulated or non-encapsulated Spneu, Stk11-ΔM and control mice had comparable bacterial loads and inflammatory responses in the lung, with the exception of lower TNFα levels in Stk11-ΔM mice after infection with the non-encapsulated strain. CONCLUSION: Myeloid Lkb1 contributes to LTA-induced lung inflammation, but is not important for host defense during pneumococcal pneumonia.


Assuntos
Pneumonia Bacteriana , Pneumonia Pneumocócica , Streptococcus pneumoniae , Proteínas Quinases Ativadas por AMP , Animais , Lipopolissacarídeos/imunologia , Fígado , Camundongos , Pneumonia Bacteriana/induzido quimicamente , Streptococcus pneumoniae/patogenicidade , Ácidos Teicoicos , Fator de Necrose Tumoral alfa
7.
Antimicrob Agents Chemother ; 66(9): e0229821, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35972289

RESUMO

Antibiotic resistance is a major problem, with methicillin-resistant Staphylococcus aureus (MRSA) being a prototypical example in surgical and community-acquired infections. S. aureus, like many pathogens, is immune evasive and able to multiply within host immune cells. Consequently, compounds that aid host immunity (e.g., by stimulating the host-mediated killing of pathogens) are appealing alternatives or adjuncts to classical antibiotics. Azithromycin is both an antibacterial and an immunomodulatory drug that accumulates in immune cells. We set out to improve the immunomodulatory properties of azithromycin by coupling the immune activators, nitric oxide and acetate, to its core structure. This new compound, designated CSY5669, enhanced the intracellular killing of MRSA by 45% ± 20% in monocyte-derived macrophages and by 55% ± 15% in peripheral blood leukocytes, compared with untreated controls. CSY5669-treated peripheral blood leukocytes produced fewer proinflammatory cytokines, while in both monocyte-derived macrophages and peripheral blood leukocytes, phagocytosis, ROS production, and degranulation were unaffected. In mice with MRSA pneumonia, CSY5669 treatment reduced inflammation, lung pathology and vascular leakage with doses as low as 0.01 µmol/kg p.o. CSY5669 had diminished direct in vitro antibacterial properties compared with azithromycin. Also, CSY5669 was immunomodulatory at concentrations well below 1% of the minimum inhibitory concentration, which would minimize selection for macrolide-resistant bacteria if it were to be used as a host-directed therapy. This study highlights the potential of CSY5669 as a possible adjunctive therapy in pneumonia caused by MRSA, as CSY5669 could enhance bacterial eradication while simultaneously limiting inflammation-associated pathology.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Estafilocócica , Pró-Fármacos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Citocinas , Inflamação/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Óxido Nítrico , Pneumonia Estafilocócica/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
8.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166519, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964875

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1ß and IL-10. RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1ß and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.


Assuntos
Monócitos , Pneumonia , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Espaço Intracelular , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Pneumonia/metabolismo , Piruvato Quinase/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Cell Infect Microbiol ; 12: 934313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903199

RESUMO

Monocytes are key players in innate immunity, with their ability to regulate inflammatory responses and combat invading pathogens. There is a growing body of evidence indicating that long non-coding RNA (lncRNA) participate in various cellular biological processes, including the innate immune response. The immunoregulatory properties of numerous lncRNAs discovered in monocytes remain largely unexplored. Here, by RNA sequencing, we identified a lncRNA JHDM1D-AS1, which was upregulated in blood monocytes obtained from patients with sepsis relative to healthy controls. JHDM1D-AS1 expression was induced in primary human monocytes exposed to Toll-like receptor ligands, such as lipopolysaccharide (LPS), or bacteria. The inducibility of JHDM1D-AS1 expression in monocytes depended, at least in part, on nuclear factor-κB activation. JHDM1D-AS1 knockdown experiments in human monocyte-derived macrophages revealed significantly enhanced expression of inflammatory mediators, before and after exposure to LPS, relative to control cells. Specifically, genes involved in inflammatory responses were upregulated (e.g., CXCL2, CXCL8, IL1RN, TREM1, TNF, and IL6), whereas genes involved in anti-inflammatory pathways were downregulated (e.g., SOCS1 and IL10RA). JHDM1D-AS1 overexpression in a pro-monocytic cell line revealed diminished pro-inflammatory responses subsequent to LPS challenge. Collectively, these findings identify JHDM1D-AS1 as a potential anti-inflammatory mediator induced in response to inflammatory stimuli.


Assuntos
RNA Longo não Codificante , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Monócitos , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166488, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835414

RESUMO

Most macrophages generate energy to mount an inflammatory cytokine response by increased glucose metabolism through intracellular glycolysis. Previous studies have suggested that alveolar macrophages (AMs), which reside in a glucose-poor natural environment, are less capable to utilize glycolysis and instead rely on other substrates to fuel oxidative phosphorylation (OXPHOS) for energy supply. At present, it is not known whether AMs are capable to use glucose metabolism to produce cytokines when other metabolic options are blocked. Here, we studied human AMs retrieved by bronchoalveolar lavage from healthy subjects, and examined their glucose metabolism in response to activation by the gram-negative bacterial component lipopolysaccharide (LPS) ex vivo. The immunological and metabolic responses of AMs were compared to those of cultured blood monocyte-derived macrophages (MDMs) from the same subjects. LPS stimulation enhanced cytokine release by both AMs and MDMs, which was associated with increased lactate release by MDMs (reflecting glycolysis), but not by AMs. In agreement, LPS induced higher mRNA expression of multiple glycolytic regulators in MDMs, but not in AMs. Flux analyses of [13C]-glucose revealed no differences in [13C]-incorporation in glucose metabolism intermediates in AMs. Inhibition of OXPHOS by oligomycin strongly reduced LPS-induced cytokine production by AMs, but not by MDMs. Collectively, these results indicate that human AMs, in contrast to MDMs, do not use glucose metabolism during LPS-induced activation and fully rely on OXPHOS for cytokine production.


Assuntos
Lipopolissacarídeos , Macrófagos Alveolares , Citocinas/metabolismo , Glucose/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo
11.
Clin Exp Immunol ; 207(3): 370-377, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35553637

RESUMO

Pseudomonas aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. Peroxisome proliferator-activated receptor (PPAR)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (24 and 1 h) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, and Ccl20) and cytokine genes (Tnfa, Il6, and Cfs3) in bronchial brushes obtained 6 h after infection. This pro-inflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3 genes encoding rate-limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.


Assuntos
Pneumonia , Tiazolidinedionas , Animais , Células Epiteliais/metabolismo , Hipoglicemiantes , Inflamação , Camundongos , PPAR gama/agonistas , PPAR gama/genética , Pioglitazona/farmacologia , Pseudomonas aeruginosa , Tiazolidinedionas/farmacologia
12.
J Innate Immun ; : 1-15, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35537415

RESUMO

Humans with dysfunctional Bruton's tyrosine kinase (Btk) are highly susceptible to bacterial infections. Compelling evidence indicates that Btk is essential for B cell-mediated immunity, whereas its role in myeloid cell-mediated immunity against infections is controversial. In this study, we determined the contribution of Btk in B cells and neutrophils to host defense against the extracellular bacterial pathogen Klebsiella pneumoniae, a common cause of pulmonary infections and sepsis. Btk-/- mice were highly susceptible to Klebsiella infection, which was not reversed by Btk re-expression in B cells and restoration of natural antibody levels. Neutrophil-specific Btk deficiency impaired host defense against Klebsiella to a similar extent as complete Btk deficiency. Neutrophil-specific Btk deficiency abolished extracellular reactive oxygen species production in response to Klebsiella. These data indicate that expression of Btk in neutrophils is crucial, while in B cells, it is dispensable for in vivo host defense against K. pneumoniae.

13.
Infect Immun ; 90(6): e0067421, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35587199

RESUMO

Peritonitis and abdominal sepsis remain major health problems and challenge for clinicians. Bruton's tyrosine kinase (Btk) is a versatile signaling protein involved in the regulation of B cell development and function, as well as innate host defense. In the current study, we aimed to explore the role of Btk in the host response during peritonitis and sepsis in mice induced by a gradually growing pathogenic strain of Escherichia coli bacteria. We found that Btk deficiency ameliorated antibacterial host defense during the late stage of E. coli-induced peritonitis. Btk was not required for cytokine and chemokine release in response to either E. coli or lipopolysaccharide and did not impact organ damage evoked by E. coli. Btk deficiency also did not alter neutrophil influx to the primary site of infection. However, the absence of Btk modestly enhanced phagocytosis of E. coli by neutrophils. These results indicate that Btk-mediated signaling is superfluous for inflammatory responses and remarkably detrimental for antibacterial defense during E. coli-induced peritonitis.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Peritonite , Sepse , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antibacterianos , Escherichia coli/metabolismo , Camundongos
14.
Cytokine ; 154: 155876, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405484

RESUMO

Tet methylcytosine dioxygenase 2 (Tet2) is an important enzyme in the demethylation of DNA. Recent evidence has indicated a role for Tet2 in the regulation of macrophage activation by lipopolysaccharide (LPS) and mice with a myeloid cell Tet2 deficiency showed enhanced lung inflammation upon local LPS administration. However, mice with a global Tet2 deficiency showed reduced systemic inflammation during abdominal sepsis. Here, we sought to determine the role of myeloid cell Tet2 in the host response during gram-negative bacterial pneumonia. To this end we infected myeloid cell specific Tet2 deficient and control mice with two common gram-negative respiratory pathogens via the airways: Pseudomonas aeruginosa (PAK, causing acute infection that remains confined in the lungs) or Klebsiella pneumoniae (causing a gradually evolving pneumonia with subsequent dissemination and sepsis) and compared bacterial loads and host response parameters between mouse strains. Bone marrow derived macrophages from myeloid Tet2 deficient mice released more interleukin-6 than control macrophages upon stimulation with PAK or K. pneumoniae. However, bacterial loads did not differ between mouse strains upon infection with viable PAK or K. pneumoniae, and neither did cytokine levels or neutrophil recruitment. In addition, in the K. pneumoniae pneumosepsis model myeloid Tet2 deficiency did not affect systemic inflammation or organ injury. Together these data strongly argue against a role for myeloid cell Tet2 in the host response during gram-negative bacterial pneumonia and pneumosepsis.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Pneumonia Bacteriana , Sepse , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Inflamação , Klebsiella pneumoniae , Lipopolissacarídeos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , Pneumonia Bacteriana/microbiologia , Sepse/microbiologia
15.
Cells ; 11(5)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269409

RESUMO

DNA methyltransferase 3b (Dnmt3b) has been suggested to play a role in the host immune response during bacterial infection. Neutrophils and other myeloid cells are crucial for lung defense against Pseudomonas (P.) aeruginosa infection. This study aimed to investigate the role of Dnmt3b in neutrophils and myeloid cells during acute pneumonia caused by P. aeruginosa. Neutrophil-specific (Dnmt3bfl/flMrp8Cre) or myeloid cell-specific (Dnmt3bfl/flLysMCre) Dnmt3b-deficient mice and littermate control mice were infected with P. aeruginosa PAK via the airways. Bacteria burdens, neutrophil recruitment, and activation (CD11b expression, myeloperoxidase, and elastase levels), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) were measured in bronchoalveolar lavage fluid (BALF) at 6 and 24 h after infection. Our data showed that the bacterial loads and neutrophil recruitment and activation did not differ in BALF obtained from neutrophil-specific Dnmt3b-deficient and control mice, whilst BALF IL-6 and TNF levels were lower in the former group at 24 but not at 6 h after infection. None of the host response parameters measured differed between myeloid cell-specific Dnmt3b-deficient and control mice. In conclusion, dnmt3b deficiency in neutrophils or myeloid cells does not affect acute immune responses in the airways during Pseudomonas pneumonia.


Assuntos
Pneumonia , Infecções por Pseudomonas , Animais , DNA (Citosina-5-)-Metiltransferases , Imunidade , Interleucina-6/metabolismo , Camundongos , Neutrófilos/metabolismo , Pneumonia/patologia , Pseudomonas , Pseudomonas aeruginosa/fisiologia , DNA Metiltransferase 3B
16.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159204

RESUMO

The respiratory epithelium provides a first line of defense against pathogens. Hypoxia-inducible factor (HIF)1α is a transcription factor which is stabilized in hypoxic conditions through the inhibition of prolyl-hydroxylase (PHD)2, the enzyme that marks HIF1α for degradation. Here, we studied the impact of HIF1α stabilization on the response of primary human bronchial epithelial (HBE) cells to the bacterial component, flagellin. The treatment of flagellin-stimulated HBE cells with the PHD2 inhibitor IOX2 resulted in strongly increased HIF1α expression. IOX2 enhanced the flagellin-induced expression of the genes encoding the enzymes involved in glycolysis, which was associated with the intracellular accumulation of pyruvate. An untargeted pathway analysis of RNA sequencing data demonstrated the strong inhibitory effects of IOX2 toward key innate immune pathways related to cytokine and mitogen-activated kinase signaling cascades in flagellin-stimulated HBE cells. Likewise, the cell-cell junction organization pathway was amongst the top pathways downregulated by IOX2 in flagellin-stimulated HBE cells, which included the genes encoding claudins and cadherins. This IOX2 effect was corroborated by an impaired barrier function, as measured by dextran permeability. These results provide a first insight into the effects associated with HIF1α stabilization in the respiratory epithelium, suggesting that HIF1α impacts properties that are key to maintaining homeostasis upon stimulation with a relevant bacterial agonist.


Assuntos
Brônquios , Flagelina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Brônquios/citologia , Flagelina/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Transdução de Sinais
17.
Bio Protoc ; 12(1): e4287, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35118178

RESUMO

Experimental pneumonia models are important tools to study the pathophysiology of lung inflammation caused by microbial infections and the efficacy of (novel) drugs. We have applied a murine model of pneumonia induced by Pseudomonas (P.) aeruginosa infection to study acute host antibacterial defense in lungs, and assess epithelial cell specific responses as well as leukocyte recruitment to the alveolar space. To study host responses during disseminating pneumonia, we also applied a model of infecting mice with hypermucoviscous Klebsiella (K.) pneumoniae. In the latter model, K. pneumoniae is restricted to lung during the early phase of infection and at the later time points disseminates to the circulation and distal organs resulting in sepsis. Detailed procedures for induction of pneumonia in mice by Pseudomonas and Klebsiella and for isolation and analysis of infected organs, bronchoalveolar fluid, and bronchial brushes are provided in this article.

18.
J Infect Dis ; 225(7): 1284-1295, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648919

RESUMO

BACKGROUND: Liver kinase B1 (LKB1) has been studied extensively as a tumor suppressor gene (Stk11) in the context of cancer. We hypothesized that myeloid LKB1 plays a role in innate immunity during pneumonia. METHODS: Mice deficient for LKB1 in myeloid cells (LysM-cre × Stk11fl/fl) or neutrophils (Mrp8-cre × Stk11fl/fl) were infected with Klebsiella pneumoniae via the airways. LysM-cre × Stk11fl/fl mice were also intranasally challenged with lipopolysaccharide (LPS). RESULTS: Mice with myeloid LKB1 deficiency, but not those with neutrophil LKB1 deficiency, had increased bacterial loads in lungs 6-40 hours after infection, compared with control mice, pointing to a role for LKB1 in macrophages. Myeloid LKB1 deficiency was associated with reduced cytokine release into the airways on local LPS instillation. The number of classic (SiglecFhighCD11bneg) alveolar macrophages (AMs) was reduced by approximately 50% in the lungs of myeloid LKB1-deficient mice, which was not caused by increased cell death or reduced proliferation. Instead, these mice had AMs with a "nonclassic" (SiglecFlowCD11bpos) phenotype. AMs did not up-regulate glycolysis in response to LPS, irrespective of LKB1 presence. CONCLUSION: Myeloid LKB1 is important for local host defense during Klebsiella pneumonia by maintaining adequate AM numbers in the lung.


Assuntos
Infecções por Klebsiella , Pneumonia Bacteriana , Animais , Infecções por Klebsiella/microbiologia , Fígado/patologia , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Immunol ; 12: 744358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804025

RESUMO

Our previous work identified human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1) as a putative driver of LPS-induced NF-κB signaling in humans in vivo. While HIVEP1 is known to interact with NF-ĸB binding DNA motifs, its function in mammalian cells is unknown. We report increased HIVEP1 mRNA expression in monocytes from patients with sepsis and monocytes stimulated by Toll-like receptor agonists and bacteria. In complementary overexpression and gene deletion experiments HIVEP1 was shown to inhibit NF-ĸB activity and induction of NF-ĸB responsive genes. RNA sequencing demonstrated profound transcriptomic changes in HIVEP1 deficient monocytic cells and transcription factor binding site analysis showed enrichment for κB site regions. HIVEP1 bound to the promoter regions of NF-ĸB responsive genes. Inhibition of cytokine production by HIVEP1 was confirmed in LPS-stimulated murine Hivep1-/- macrophages and HIVEP1 knockdown zebrafish exposed to the common sepsis pathogen Streptococcus pneumoniae. These results identify HIVEP1 as a negative regulator of NF-κB in monocytes/macrophages that inhibits proinflammatory reactions in response to bacterial agonists in vitro and in vivo.


Assuntos
Proteínas de Ligação a DNA/imunologia , Inflamação/imunologia , Macrófagos/imunologia , NF-kappa B/imunologia , Sepse/imunologia , Fatores de Transcrição/imunologia , Animais , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Sepse/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra
20.
Front Immunol ; 12: 723967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552589

RESUMO

Bruton's tyrosine kinase (Btk) is a cytoplasmic kinase expressed in B cells and myeloid cells. It is essential for B cell development and natural antibody-mediated host defense against bacteria in humans and mice, but little is known about the role of Btk in innate host defense in vivo. Previous studies have indicated that lack of (natural) antibodies is paramount for impaired host defense against Streptococcus (S.) pneumoniae in patients and mice with a deficiency in functional Btk. In the present study, we re-examined the role of Btk in B cells and myeloid cells during pneumococcal pneumonia and sepsis in mice. The antibacterial defense of Btk-/- mice was severely impaired during pneumococcal pneumosepsis and restoration of natural antibody production in Btk-/- mice by transgenic expression of Btk specifically in B cells did not suffice to protect against infection. Btk-/- mice with reinforced Btk expression in MhcII+ cells, including B cells, dendritic cells and macrophages, showed improved antibacterial defense as compared to Btk-/- mice. Bacterial outgrowth in Lysmcre-Btkfl/Y mice was unaltered despite a reduced capacity of Btk-deficient alveolar macrophages to respond to pneumococci. Mrp8cre-Btkfl/Y mice with a neutrophil specific paucity in Btk expression, however, demonstrated impaired antibacterial defense. Neutrophils of Mrp8cre-Btkfl/Y mice displayed reduced release of granule content after pulmonary installation of lipoteichoic acid, a gram-positive bacterial cell wall component relevant for pneumococci. Moreover, Btk deficient neutrophils showed impaired degranulation and phagocytosis upon incubation with pneumococci ex vivo. Taken together, the results of our study indicate that besides regulating B cell-mediated immunity, Btk is critical for regulation of myeloid cell-mediated, and particularly neutrophil-mediated, innate host defense against S. pneumoniae in vivo.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Imunidade Inata , Células Mieloides/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Sepse/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Pneumonia Pneumocócica/genética , Transdução de Sinais , Streptococcus pneumoniae/fisiologia , Ácidos Teicoicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...