Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 32(11): 3613-3637, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958563

RESUMO

The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Oxigenases de Função Mista/genética , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/metabolismo , Mutação , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
BMC Plant Biol ; 19(1): 304, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291882

RESUMO

BACKGROUND: In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Communication between these compartments is supposed to be tightly regulated at their interfaces. Here, we characterize the deposition pattern of an apoplastic lipid barrier between the maternal inner integument and fertilization products in Arabidopsis thaliana seeds. RESULTS: We demonstrate that an apoplastic lipid barrier is first deposited by the ovule inner integument and undergoes de novo cutin deposition following central cell fertilization and relief of the FERTILIZATION INDEPENDENT SEED Polycomb group repressive mechanism. In addition, we show that the WIP zinc-finger TRANSPARENT TESTA 1 and the MADS-Box TRANSPARENT TESTA 16 transcription factors act maternally to promote its deposition by regulating cuticle biosynthetic pathways. Finally, mutant analyses indicate that this apoplastic barrier allows correct embryo sliding along the seed coat. CONCLUSIONS: Our results revealed that the deposition of a cutin apoplastic barrier between seed maternal and zygotic tissues is part of the seed coat developmental program.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Lipídeos de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
3.
Planta ; 246(4): 721-735, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667438

RESUMO

MAIN CONCLUSION: Phospholipases Dζ play different roles in Arabidopsis salt tolerance affecting the regulation of ion transport and antioxidant responses. Lipid signalling mediated by phospholipase D (PLD) plays essential roles in plant growth including stress and hormonal responses. Here we show that PLDζ1 and PLDζ2 have distinct effects on Arabidopsis responses to salinity. A transcriptome analysis of a double pldζ1pldζ2 mutant revealed a cluster of genes involved in abiotic and biotic stresses, such as the high salt-stress responsive genes DDF1 and RD29A. Another cluster of genes with a common expression pattern included ROS detoxification genes involved in electron transport and biotic and abiotic stress responses. Total superoxide dismutase (SOD) activity was induced early in the shoots and roots of all pldζ mutants exposed to mild or severe salinity with the highest SOD activity measured in pldζ2 at 14 days. Lipid peroxidation in shoots and roots was higher in the pldζ1 mutant upon salt treatment and pldζ1 accumulated H2O2 earlier than other genotypes in response to salt. Salinity caused less deleterious effects on K+ accumulation in shoots and roots of the pldζ2 mutant than of wild type, causing only a slight variation in Na+/K+ ratio. Relative growth rates of wild-type plants, pldζ1, pldζ2 and pldζ1pldζ2 mutants were similar in control conditions, but strongly affected by salt in WT and pldζ1. The efficiency of photosystem II, estimated by measuring the ratio of chlorophyll fluorescence (F v/F m ratio), was strongly decreased in pldζ1 under salt stress. In conclusion, PLDζ2 plays a key role in determining Arabidopsis sensitivity to salt stress allowing ion transport and antioxidant responses to be finely regulated.


Assuntos
Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Transporte de Íons , Fosfolipase D/metabolismo , Transcriptoma , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Fosfolipase D/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Tolerância ao Sal , Estresse Fisiológico
4.
Development ; 144(8): 1490-1497, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28348169

RESUMO

Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products - embryo and endosperm - and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization.


Assuntos
Arabidopsis/citologia , Arabidopsis/embriologia , Padronização Corporal , Desenvolvimento Vegetal , Epiderme Vegetal/citologia , Epiderme Vegetal/embriologia , Sementes/embriologia , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Fertilização
5.
Biochem J ; 473(17): 2623-34, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27303048

RESUMO

Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain.


Assuntos
Arabidopsis/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Prolina Oxidase/metabolismo , Prolina/metabolismo , Proteoma , Arabidopsis/enzimologia , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas
6.
New Phytol ; 208(4): 1138-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26180024

RESUMO

Many plants accumulate proline, a compatible osmolyte, in response to various environmental stresses such as water deficit and salinity. In some stress responses, plants generate hydrogen peroxide (H2 O2 ) that mediates numerous physiological and biochemical processes. The aim was to study the relationship between stress-induced proline accumulation and H2 O2 production. Using pharmacological and reverse genetic approaches in Arabidopsis thaliana, we investigated the role of NADPH oxidases, Respiratory burst oxidase homologues (Rboh), in the induction of proline accumulation was investigated in response to stress induced by either 200 mM NaCl or 400 mM mannitol. Stress from NaCl or mannitol resulted in a transient increase in H2 O2 content accompanied by accumulation of proline. Dimethylthiourea, a scavenger of H2 O2 , and diphenylene iodonium (DPI), an inhibitor of H2 O2 production by NADPH oxidase, were found to significantly inhibit proline accumulation in these stress conditions. DPI also reduced the expression level of Δ(1) -pyrroline-5-carboxylate synthetase, the key enzyme involved in the biosynthesis of proline. Similarly, less proline accumulated in knockout mutants lacking either AtRbohD or AtRbohF than in wild-type plants in response to the same stresses. Our data demonstrate that AtRbohs (A. thaliana Rbohs) contribute to H2 O2 production in response to NaCl or mannitol stress to increase proline accumulation in this plant.


Assuntos
Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Manitol/metabolismo , NADH NADPH Oxirredutases/metabolismo , Prolina/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/metabolismo
7.
Front Plant Sci ; 5: 772, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628629

RESUMO

Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

8.
Plant Cell Physiol ; 53(1): 183-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22121247

RESUMO

Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.


Assuntos
Brassicaceae/enzimologia , Fosfolipase D/metabolismo , Prolina/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , 1-Butanol/farmacologia , Brassicaceae/efeitos dos fármacos , Estrenos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Manitol/farmacologia , Modelos Biológicos , Osmose/efeitos dos fármacos , Pirrolidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
Methods Mol Biol ; 639: 333-40, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20387057

RESUMO

Proline is a key factor in plant adaptation to environmental stresses. The Delta(1)-pyrroline-5-carboxylate synthetase catalyzes the first committed step and the rate-limiting step for proline biosynthesis in both plants and mammals. This enzyme catalyzes the reduction of glutamate to pyrroline-5-carboxylate in two sequential steps including the phosphorylation and the reduction of its precursor. Several methods were established to assay P5CS activity but however none of them are fully reliable. Therefore, we developed a new simple and reliable assay which is based on the quantification of Pi. This assay allowed us to determine the optimal pH, the apparent K(m) and V(m) of P5CS with regard to ATP and glutamate.


Assuntos
Arabidopsis/enzimologia , Ensaios Enzimáticos/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais/metabolismo , Folhas de Planta/enzimologia , Solubilidade , Especificidade por Substrato
10.
Plant Physiol ; 152(4): 1851-62, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20172963

RESUMO

Mitochondrial carrier family proteins are diverse in their substrate specificity, organellar location, and gene expression. In Arabidopsis (Arabidopsis thaliana), 58 genes encode these six-transmembrane-domain proteins. We investigated the biological role of the basic amino acid carrier Basic Amino Acid Carrier2 (BAC2) from Arabidopsis that is structurally and functionally similar to ARG11, a yeast ornithine and arginine carrier, and to Arabidopsis BAC1. By studying the expression of BAC2 and the consequences of its mutation in Arabidopsis, we showed that BAC2 is a genuine mitochondrial protein and that Arabidopsis requires expression of the BAC2 gene in order to use arginine. The BAC2 gene is induced by hyperosmotic stress (with either 0.2 m NaCl or 0.4 m mannitol) and dark-induced senescence. The BAC2 promoter contains numerous stress-related cis-regulatory elements, and the transcriptional activity of BAC2:beta-glucuronidase is up-regulated by stress and senescence. Under hyperosmotic stress, bac2 mutants express the P5CS1 proline biosynthetic gene more strongly than the wild type, and this correlates with a greater accumulation of Pro. Our data suggest that BAC2 is a hyperosmotic stress-inducible transporter of basic amino acids that contributes to proline accumulation in response to hyperosmotic stress in Arabidopsis.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Mutação , Prolina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dados de Sequência Molecular , Pressão Osmótica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...