Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 109(1): e145-e154, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37560997

RESUMO

CONTEXT: Climate change and global warming have been hypothesized to influence the increased prevalence of obesity worldwide. However, the evidence is scarce. OBJECTIVE: We aimed to investigate how outside temperature might affect adipose tissue physiology and metabolic traits. METHODS: The expression of genes involved in thermogenesis/browning and adipogenesis were evaluated (through quantitative polymerase chain reaction) in the subcutaneous adipose tissue (SAT) from 1083 individuals recruited in 5 different regions of Spain (3 in the North and 2 in the South). Plasma biochemical variables and adiponectin (enzyme-linked immunosorbent assay) were collected through standardized protocols. Mean environmental outdoor temperatures were obtained from the National Agency of Meteorology. Univariate, multivariate, and artificial intelligence analyses (Boruta algorithm) were performed. RESULTS: The SAT expression of genes associated with browning (UCP1, PRDM16, and CIDEA) and ADIPOQ were significantly and negatively associated with minimum, average, and maximum temperatures. The latter temperatures were also negatively associated with the expression of genes involved in adipogenesis (FASN, SLC2A4, and PLIN1). Decreased SAT expression of UCP1 and ADIPOQ messenger RNA and circulating adiponectin were observed with increasing temperatures in all individuals as a whole and within participants with obesity in univariate, multivariate, and artificial intelligence analyses. The differences remained statistically significant in individuals without type 2 diabetes and in samples collected during winter. CONCLUSION: Decreased adipose tissue expression of genes involved in browning and adiponectin with increased environmental temperatures were observed. Given the North-South gradient of obesity prevalence in these same regions, the present observations could have implications for the relationship of the obesity pandemic with global warming.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Humanos , Temperatura , Adiponectina/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Inteligência Artificial , Tecido Adiposo/metabolismo , Obesidade/epidemiologia , Obesidade/genética , Obesidade/complicações , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Termogênese/genética
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902180

RESUMO

Excess iron is known to trigger adipose tissue dysfunction and insulin resistance. Circulating markers of iron status have been associated with obesity and adipose tissue in cross-sectional studies. We aimed to evaluate whether iron status is linked to changes in abdominal adipose tissue longitudinally. Subcutaneous abdominal tissue (SAT) and visceral adipose tissue (VAT) and its quotient (pSAT) were assessed using magnetic resonance imaging (MRI), at baseline and after one year of follow-up, in 131 (79 in follow-up) apparently healthy subjects, with and without obesity. Insulin sensitivity (euglycemic- hyperinsulinemic clamp) and markers of iron status were also evaluated. Baseline serum hepcidin (p = 0.005 and p = 0.002) and ferritin (p = 0.02 and p = 0.01)) were associated with an increase in VAT and SAT over one year in all subjects, while serum transferrin (p = 0.01 and p = 0.03) and total iron-binding capacity (p = 0.02 and p = 0.04) were negatively associated. These associations were mainly observed in women and in subjects without obesity, and were independent of insulin sensitivity. After controlling for age and sex, serum hepcidin was significantly associated with changes in subcutaneous abdominal tissue index (iSAT) (ß = 0.406, p = 0.007) and visceral adipose tissue index (iVAT) (ß = 0.306, p = 0.04), while changes in insulin sensitivity (ß = 0.287, p = 0.03) and fasting triglycerides (ß = -0.285, p = 0.03) were associated with changes in pSAT. These data indicated that serum hepcidin are associated with longitudinal changes in SAT and VAT, independently of insulin sensitivity. This would be the first prospective study evaluating the redistribution of fat according to iron status and chronic inflammation.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal , Ferro , Feminino , Humanos , Tecido Adiposo , Estudos Transversais , Hepcidinas , Ferro/metabolismo , Obesidade/complicações , Estudos Prospectivos , Gordura Subcutânea
4.
Eur Radiol Exp ; 4(1): 33, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32488324

RESUMO

BACKGROUND: Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. METHODS: Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. RESULTS: Optimal contrast agent dose was found to be 20 mL/kg injected at 400 µL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. CONCLUSION: Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.


Assuntos
Meios de Contraste/administração & dosagem , Iopamidol/administração & dosagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/lesões , Cicatrização , Microtomografia por Raio-X/métodos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Estudo de Prova de Conceito , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...