Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mass Spectrom ; 4992024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854816

RESUMO

Capillary vibrating sharp-edge spray ionization (cVSSI) combined with hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been utilized to characterize different solution-phase DNA conformers including DNA G-quadruplex topologies as well as triplex DNA and duplex DNA. In general, G-quadruplex DNA shows a wide range of protection of hydrogens extending from ~12% to ~21% deuterium incorporation. Additionally, the DNA sequences selected to represent parallel, antiparallel, and hybrid G-quadruplex topologies exhibit slight differences in deuterium uptake levels which appear to loosely relate to overall conformer stability. Notably, the exchange level for one of the hybrid sequence sub topologies of G-quadruplex DNA (24 TTG) is significantly different (compared with the others studied here) despite the DNA sequences being highly comparable. For the quadruplex-forming sequences, correlation analysis suggests protection of base hydrogens involved in tetrad hydrogen bonding. For duplex DNA ~19% deuterium incorporation is observed while only ~16% is observed for triplex DNA. This increased protection of hydrogens may be due to the added backbone scaffolding and Hoogsteen base pairing of the latter species. These experiments lay the groundwork for future studies aimed at determining the structural source of this protection as well as the applicability of the approach for ascertaining different oligonucleotide folds, co-existing conformations, and/or overall conformer flexibility.

2.
Rapid Commun Mass Spectrom ; 37(16): e9593, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37430450

RESUMO

RATIONALE: Many different structure analysis techniques are not capable of probing the heterogeneity of solution conformations. Here, we examine the ability of in-droplet hydrogen-deuterium exchange (HDX) to directly probe solution conformer heterogeneity of a protein with mass spectrometry (MS) detection. METHODS: Two vibrating capillary vibrating sharp-edge spray ionization (cVSSI) devices have been arranged such that they generate microdroplet plumes of the analyte and D2 O reagent, which coalesce to form reaction droplets where HDX takes place in the solution environment. The native HDX-MS setup has been first explored for two model peptides that have distinct structural compositions in solution. The effectiveness of the multidevice cVSSI-HDX in illustrating structural details has been further exploited to investigate coexisting solution-phase conformations of the protein ubiquitin. RESULTS: In-droplet HDX reveals decreased backbone exchange for a model peptide that has a greater helix-forming propensity. Differences in intrinsic rates of the alanine and serine residues may account for much of the observed protection. The data allow the first estimates of backbone exchange rates for peptides undergoing in-droplet HDX. That said, the approach may hold greater potential for investigating the tertiary structure and structural transitions of proteins. For ubiquitin protein, HDX reactivity differences suggest that multiple conformers are present in native solutions. The addition of methanol to buffered aqueous solutions of ubiquitin results in increased populations of solution conformers of higher reactivity. Data analysis suggests that partially folded conformers such as the A-state of ubiquitin increase with methanol content; the native state may be preserved to a limited degree even under stronger denaturation conditions. CONCLUSION: The deuterium uptake after in-droplet HDX has been observed to correspond to some degree with peptide backbone hydrogen protection based on differences in intrinsic rates of exchange. The presence of coexisting protein solution structures under native and denaturing solution conditions has been distinguished by the isotopic distributions of deuterated ubiquitin ions.


Assuntos
Medição da Troca de Deutério , Metanol , Deutério , Peptídeos , Ubiquitina , Hidrogênio
3.
J Phys Chem B ; 126(44): 8970-8984, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318704

RESUMO

Field-free capillary vibrating sharp-edge spray ionization (cVSSI) is evaluated for its ability to conduct native mass spectrometry (MS) experiments. The charge state distributions for nine globular proteins are compared using field-free cVSSI, field-enabled cVSSI, and electrospray ionization (ESI). In general, for both positive and negative ion mode, the average charge state (qavg) increases for field-free cVSSI with increasing molecular weight similar to ESI. A clear difference is that the qavg is significantly lower for field-free conditions in both analyses. Two proteins, leptin and thioredoxin, exhibit bimodal charge state distributions (CSDs) upon the application of voltage in positive ion mode; only a monomodal distribution is observed for field-free conditions. In negative ion mode, thioredoxin exhibits a multimodal CSD upon the addition of voltage to cVSSI. Extensive molecular dynamics (MD) simulations of myoglobin and leptin in nanodroplets suggest that the multimodal CSD for leptin may originate from increased conformational "breathing" (decreased packing) and association with the droplet surface. These properties along with increased droplet charge appear to play critical roles in shifting ionization processes for some proteins. Further exploration and development of field-free cVSSI as a new ionization source for native MS especially as applied to more flexible biomolecular species is warranted.


Assuntos
Leptina , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons/química , Mioglobina/química , Tiorredoxinas
4.
Anal Chem ; 94(32): 11329-11336, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35913997

RESUMO

Coupling capillary electrophoresis (CE) to mass spectrometry (MS) is a powerful strategy to leverage a high separation efficiency with structural identification. Traditional CE-MS interfacing relies upon voltage to drive this process. Additionally, sheathless interfacing requires that the electrophoresis generates a sufficient volumetric flow to sustain the ionization process. Vibrating sharp-edge spray ionization (VSSI) is a new method to interface capillary electrophoresis to mass analyzers. In contrast to traditional interfacing, VSSI is voltage-free, making it straightforward for CE and MS. New nanoflow sheath CE-VSSI-MS is introduced in this work to reduce the reliance on the separation flow rate to facilitate the transfer of analyte to the MS. The nanoflow sheath VSSI spray ionization functions from 400 to 900 nL/min. Using the new nanoflow sheath reported here, volumetric flow rate through the separation capillary is less critical, allowing the use of a small (i.e., 20 to 25 µm) inner diameter separation capillary and enabling the use of higher separation voltages and faster analysis. Moreover, the use of a nanoflow sheath enables greater flexibility in the separation conditions. The nanoflow sheath is operated using aqueous solutions in the background electrolyte and in the sheath, demonstrating the separation can be performed under normal and reversed polarity in the presence or absence of electroosmotic flow. This includes the use of a wider pH range as well. The versatility of nanoflow sheath CE-VSSI-MS is demonstrated by separating cationic, anionic, and zwitterionic molecules under a variety of separation conditions. The detection sensitivity observed with nanoflow sheath CE-VSSI-MS is comparable to that obtained with sheathless CE-VSSI-MS as well as CE-MS separations with electrospray ionization interfacing. A bare fused silica capillary is used to separate cationic ß-blockers with a near-neutral background electrolyte at concentrations ranging from 1.0 nM to 1.0 µM. Under acidic conditions, 13 amino acids are separated with normal polarity at a concentration ranging from 0.25 to 5 µM. Finally, separations of anionic compounds are demonstrated using reversed polarity under conditions of suppressed electroosmotic flow through the use of a semipermanent surface coating. With a near-neutral separation electrolyte, anionic nonsteroidal anti-inflammatory drugs are detected over a concentration range of 0.1 to 5.0 µM.


Assuntos
Eletroforese Capilar , Espectrometria de Massas por Ionização por Electrospray , Ânions , Cátions , Eletro-Osmose , Eletroforese Capilar/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
Anal Chem ; 94(26): 9226-9233, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35729103

RESUMO

The new ionization technique termed vibrating sharp-edge spray ionization (cVSSI) has been coupled with corona discharge to investigate atmospheric pressure chemical ionization (APCI) capabilities. The optimized source was evaluated for its ability to enhance ion signal intensity, overcome matrix effects, and limit ion suppression. The results have been compared with state-of-the-art ESI source performance as well as a new APCI-like source. In methanol, the ion signal intensity increased 10-fold and >10-fold for cocaine and the suppressed analytes, respectively. The ability to overcome ion suppression was improved from 2-fold to 16-fold for theophylline and vitamin D2, respectively. For aqueous samples, ion signal levels increased by two orders of magnitude for all analytes. In both solvent systems, the signal-to-noise ratios also increased for all suppressed analytes. One example of the characterization of low-ionizing (by ESI or cVSSI alone) species in the presence of high-ionizing species by direct analysis from a cotton swab is presented. The work is discussed with respect to the advantages of cVSSI-APCI for direct, in situ, and field analyses.


Assuntos
Pressão Atmosférica , Espectrometria de Massas por Ionização por Electrospray , Misturas Complexas , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
ACS Omega ; 6(28): 18370-18382, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308068

RESUMO

Multidevice capillary vibrating sharp-edge spray ionization (cVSSI) source parameters have been examined to determine their effects on conducting in-droplet hydrogen/deuterium exchange (HDX) experiments. Control experiments using select compounds indicate that the observed differences in mass spectral isotopic distributions obtained upon initiation of HDX result primarily from solution-phase reactions as opposed to gas-phase exchange. Preliminary studies have determined that robust HDX can only be achieved with the application of same-polarity voltage to both the analyte and the deuterium oxide reagent (D2O) cVSSI devices. Additionally, a similar HDX reactivity dependence on the voltage applied to the D2O device for various analytes is observed. Analyte and reagent flow experiments show that, for the multidevice cVSSI setup employed, there is a nonlinear dependence on the D2O reagent flow rate; increasing the D2O reagent flow by 100% results in only an ∼10-20% increase in deuterium incorporation for this setup. Instantaneous (subsecond) response times have been demonstrated in the initiation or termination of HDX, which is achieved by turning on or off the reagent cVSSI device piezoelectric transducer. The ability to distinguish isomeric species by in-droplet HDX is presented. Finally, a demonstration of a three-component cVSSI device setup to perform multiple (successive or in combination) in-droplet chemistries to enhance compound ionization and identification is presented and a hypothetical metabolomics workflow consisting of successive multidevice activation is briefly discussed.

7.
J Am Soc Mass Spectrom ; 32(2): 473-485, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417454

RESUMO

Field-enabled capillary vibrating sharp-edge spray ionization (cVSSI) has been combined with high-flow liquid chromatography (LC) and mass spectrometry (MS) to establish current ionization capabilities for metabolomics and proteomics investigations. Comparisons are made between experiments employing cVSSI and a heated electrospray ionization probe representing the state-of-the-art in microflow LC-MS methods for 'omics studies. For metabolomics standards, cVSSI is shown to provide an ionization enhancement by factors of 4 ± 2 for both negative and positive ion mode analyses. For chymotryptic peptides, cVSSI is shown to provide an ionization enhancement by factors of 5 ± 2 and 2 ± 1 for negative and positive ion mode analyses, respectively. Slightly broader high-performance liquid chromatography peaks are observed in the cVSSI datasets, and several studies suggest that this results from a slightly decreased post-split flow rate. This may result from partial obstruction of the pulled-tip emitter over time. Such a challenge can be remedied with the use of LC pumps that operate in the 10 to 100 µL·min-1 flow regime. At this early stage, the proof-of-principle studies already show ion signal advantages over state-of-the-art electrospray ionization (ESI) for a wide variety of analytes in both positive and negative ion mode. Overall, this represents a ∼20-50-fold improvement over the first demonstration of LC-MS analyses by voltage-free cVSSI. Separate comparisons of the ion abundances of compounds eluting under identical solvent conditions reveal ionization efficiency differences between cVSSI and ESI and may suggest varied contributions to ionization from different physicochemical properties of the compounds. Future investigations of parameters that could further increase ionization gains in negative and positive ion mode analyses with the use of cVSSI are briefly presented.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Eletricidade , Peptídeos/análise , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
8.
J Am Soc Mass Spectrom ; 32(1): 84-94, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32856909

RESUMO

The relative contributions to ionization efficiency by three molecular chemical properties have been examined for field-free and field-enabled capillary vibrating sharp-edge spray ionization (cVSSI) using mass spectrometry (MS) analysis. Ion intensities have been recorded for model compounds under each operational ionization mode as well as for aqueous and nonaqueous (methanol) solvent systems. Multiple regression analysis suggests that for field-free cVSSI, ion intensity is mostly associated with the log of the base dissociation constant (pKb) and proton affinity (PA) for both aqueous and methanol solutions. Comparatively, for field-enabled cVSSI using aqueous solutions, the dominant factor correlated with ion intensity is the log of the partition coefficient (log P). To a lesser degree, this is observed for methanol solutions as well. For ESI, pKb is the dominant factor associated with ion signal levels from methanol and aqueous solutions. These results are supported by studies conducted on two different mass spectrometers employing different cVSSI emitter tips. The relationship of ion intensity and pKb in ESI is supported by multiple studies; however, the shift to other chemical properties with the addition of cVSSI suggests the possibility that a different (or combinations of) ionization mechanism(s) may be operative for these ionization modes. These results are briefly considered in light of the different ESI mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...