Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(7): 2661-2673, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38888225

RESUMO

The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.


Assuntos
Glicopeptídeos , Polissacarídeos , Proteômica , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Polissacarídeos/química , Polissacarídeos/análise , Glicosilação , Glicoproteínas/química , Glicoproteínas/análise , Espectrometria de Massas por Ionização por Electrospray , Íons/química , Sequência de Aminoácidos , Humanos , Cromatografia Líquida , Cromatografia de Fase Reversa , Dados de Sequência Molecular
2.
Anal Chem ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343116

RESUMO

The mammalian glycome is structurally complex and diverse, composed of many glycan classes such as N- and O-linked glycans, glycosaminoglycans (GAGs), glycosphingolipids (GSLs), and other distinct glycan features such as polysialic acids (PolySia), sulfation, and proteoglycan attachment stubs. Various methods are used to analyze these different components of the glycome, but they require prefractionated/partitioned samples to target each glycan class individually. To address this need for a knowledge of the relationship between the different glycan components of a biological system, we developed a sequential release workflow for analysis of multiple conjugated glycan classes (PolySia, GAGs, GSL glycans, N-glycans, and O-glycans) from the same tissue lysate, termed SSSMuG─Same Sample Sequential Multi-Glycomics. With this sequential glycan release approach, five glycan classes were characterized (or four glycan classes plus proteomics) using enzymatic or chemical release from a single sample immobilized on a polyvinylidene difluoride membrane. The various released glycan classes were then analyzed by HPLC and MS techniques using commonly available analytical setups. Compared to single glycan class release approaches, SSSMuG was able to identify more glycans and more proteins with higher-intensity analytical peaks and provide a better comparative normalization of the different glycan classes of the complex glycome. To this end, the SSSMuG technology workflow will be a foundation for a paradigm shift in the field, transforming glycoanalytics and facilitating the push toward multiglycomics and systems glycobiology.

3.
Nat Cell Biol ; 26(1): 57-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129691

RESUMO

The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.


Assuntos
Biogênese de Organelas , Organelas , Organelas/metabolismo , Peroxissomos/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...