Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 15(8): 942-952, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28055137

RESUMO

Application of nitrogen fertilizer in the past 50 years has resulted in significant increases in crop yields. However, loss of nitrogen from crop fields has been associated with negative impacts on the environment. Developing maize hybrids with improved nitrogen use efficiency is a cost-effective strategy for increasing yield sustainably. We report that a dominant male-sterile mutant Ms44 encodes a lipid transfer protein which is expressed specifically in the tapetum. A single amino acid change from alanine to threonine at the signal peptide cleavage site of the Ms44 protein abolished protein processing and impeded the secretion of protein from tapetal cells into the locule, resulting in dominant male sterility. While the total nitrogen (N) content in plants was not changed, Ms44 male-sterile plants reduced tassel growth and improved ear growth by partitioning more nitrogen to the ear, resulting in a 9.6% increase in kernel number. Hybrids carrying the Ms44 allele demonstrated a 4%-8.5% yield advantage when N is limiting, 1.7% yield advantage under drought and 0.9% yield advantage under optimal growth conditions relative to the yield of wild type. Furthermore, we have developed an Ms44 maintainer line for fertility restoration, male-sterile inbred seed increase and hybrid seed production. This study reveals that protein secretion from the tapetum into the locule is critical for pollen development and demonstrates that a reduction in competition between tassel and ear by male sterility improves grain yield under low-nitrogen conditions in maize.


Assuntos
Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Mutação Puntual/genética , Zea mays/genética , Nitrogênio/metabolismo , Infertilidade das Plantas/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Zea mays/metabolismo , Zea mays/fisiologia
2.
Plant Biotechnol J ; 12(6): 685-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24618117

RESUMO

A transgenic gene-silencing approach was used to modulate the levels of ethylene biosynthesis in maize (Zea mays L.) and determine its effect on grain yield under drought stress in a comprehensive set of field trials. Commercially relevant transgenic events were created with down-regulated ACC synthases (ACSs), enzymes that catalyse the rate-limiting step in ethylene biosynthesis. These events had ethylene emission levels reduced approximately 50% compared with nontransgenic nulls. Multiple, independent transgenic hybrids and controls were tested in field trials at managed drought-stress and rain-fed locations throughout the US. Analysis of yield data indicated that transgenic events had significantly increased grain yield over the null comparators, with the best event having a 0.58 Mg/ha (9.3 bushel/acre) increase after a flowering period drought stress. A (genotype × transgene) × environment interaction existed among the events, highlighting the need to better understand the context in which the down-regulation of ACSs functions in maize. Analysis of secondary traits showed that there was a consistent decrease in the anthesis-silking interval and a concomitant increase in kernel number/ear in transgene-positive events versus nulls. Selected events were also field tested under a low-nitrogen treatment, and the best event was found to have a significant 0.44 Mg/ha (7.1 bushel/acre) yield increase. This set of extensive field evaluations demonstrated that down-regulating the ethylene biosynthetic pathway can improve the grain yield of maize under abiotic stress conditions.


Assuntos
Secas , Etilenos/biossíntese , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Liases/metabolismo , Nitrogênio/farmacologia , Plantas Geneticamente Modificadas , Interferência de RNA/efeitos dos fármacos , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
3.
Int J Sport Nutr Exerc Metab ; 18(3): 247-59, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18562773

RESUMO

This investigation sought to study changes in leukocyte subsets after an acute bout of resistance exercise (ARE) and to determine whether ingestion of carbohydrate (CHO) could attenuate those immune responses. Nine male track-and-field athletes (21.1 +/- 1.4 yr, 177.2 +/- 5.5 cm, 80.9 +/- 9.7 kg, 8.7% +/- 3.8% fat) and 10 male ice hockey athletes (21.0 +/- 2.2 yr, 174.3 +/- 6.2 cm, 79.6 +/-11.1 kg, 13.9% +/- 3.73% fat) participated in 2 different ARE protocols. Both experiments employed a counterbalanced double-blind research design, wherein participants consumed either a CHO (1 g/kg body weight) or placebo beverage before, during, and after a weight-lifting session. Serum cortisol decreased (p < .05) at 90 min into recovery compared with immediately postexercise. Plasma lactate, total leukocyte, neutrophil, and monocyte concentrations increased (p < .05) from baseline to immediately postexercise. Lymphocytes decreased significantly (p < .05) from baseline to 90 min postexercise. Lymphocytes were lower (p < .05) for the CHO condition than for placebo. The findings of this study indicate the following: ARE appears to evoke changes in immune cells similar to those previously reported during endurance exercise, and CHO ingestion attenuates lymphocytosis after ARE.


Assuntos
Carboidratos da Dieta/administração & dosagem , Resistência Física/imunologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Adulto , Bebidas , Estudos Cross-Over , Método Duplo-Cego , Humanos , Hidrocortisona/sangue , Contagem de Leucócitos , Contagem de Linfócitos , Linfocitose/imunologia , Masculino , Consumo de Oxigênio/fisiologia , Levantamento de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...