Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Burns ; 47(2): 466-478, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32839037

RESUMO

INTRODUCTION: Determining the efficacy of anti-scar technologies can be difficult as qualitative, subjective assessments are often utilized instead of systematic, objective measures. Perceptions regarding the reliability of instruments for quantitative measurements along with their high cost and increased data collection time may discourage their use, leading to use of scar scales which are relatively quick and low-cost. To directly evaluate the reliability of instruments for quantitative measurements of scar properties, instruments and two qualitative scales were compared by assessing a variety of cutaneous scars. METHODS: Scar height and surface texture were evaluated using a 3D scanner and a mold/cast technique. Scar color was evaluated by using a spectroscopy-based tool, the Mexameter®, and digital photography with image analysis. Scar biomechanics were evaluated using the BTC-2000™, Dermal Torque Meter (DTM®), and ballistometer®. The Vancouver Scar Scale (VSS) and Patient and Observer Scar Assessment Scale (POSAS) were used to qualitatively evaluate the same scar properties. Intraclass correlation coefficients (ICC) were used to determine inter- and intra-user reliability (poor, moderate, good, excellent) with all instruments and the kappa reliability statistic was used to asses inter-user reliability (poor, fair, moderate, good, very good) for VSS and POSAS. Time for measurement collection and after collection analysis was also recorded. RESULTS: The Mexameter® was the most reliable method for evaluating erythema and pigmentation compared to digital photography and image processing, POSAS and VSS. Digital photography and analysis was more reliable than POSAS and VSS. Assessment of scar height was significantly more reliable when using a 3D scanner versus VSS and POSAS. The 3D scanner and mold-cast techniques also offered an additional benefit of providing an absolute value of scar height relative to the surrounding tissue. Intra-user reliability for all mechanical tests was moderate to good. Inter-user reliability was greater when using the BTC-2000™ and ballistometer® versus the DTM®. All quantitative measurements took less than 90 s for collection, with the exception of the mold/cast technique. CONCLUSION: Non-invasive instruments allow scar properties to be quantitatively assessed with high sensitivity and as a function of time and/or treatment without the need for biopsy collection. Overall, the reliability of scar assessments was significantly improved when quantitative instruments were utilized versus scar scales. Quantitative assessment of color and biomechanics were swift, requiring less than 90 s per measurement while assessments of texture and height required additional analysis time after collection. With proper training of clinical staff and well-defined protocols for measurement collection, reliable, quantitative assessments of scar properties can be collected with little disruption to the clinical workflow.


Assuntos
Queimaduras , Cicatriz , Queimaduras/complicações , Cicatriz/etiologia , Cicatriz/patologia , Humanos , Fotografação , Pigmentação , Reprodutibilidade dos Testes
2.
Adv Wound Care (New Rochelle) ; 9(8): 453-461, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32320361

RESUMO

Objective: Despite the development of a number of treatment modalities, scarring remains common postburn injury. To reduce burn scarring, pressure garment therapy has been widely utilized but is complicated by low patient adherence. To improve adherence, reduced hours of daily garment wear has been proposed. Approach: To examine the efficacy of pressure garment therapy at reduced durations of daily wear, a porcine burn-excise-autograft model was utilized. Grafted burns were treated with pressure garments (20 mmHg) for 8, 16, or 24 h of daily wear with untreated burns serving as controls. Scar area, thickness, biomechanical properties, and tissue structure were assessed over time. Results: All treatment groups reduced scar thickness and contraction versus controls and improved scar pliability and elasticity. Pressure garments worn 24 h per day significantly reduced contraction versus the 8- and 16-h groups and prevented alignment of collagen within the dermis. Innovation: Though pressure garment therapy is prescribed for use 23 h per day, the need for almost continuous use has not been previously examined. Adjustable, low-fatigue pressure garments were developed for this porcine study to examine the role of daily duration of wear without confounding factors such as garment fatigue and patient adherence. Conclusion: For maximum efficacy, pressure garments should be worn 23 to 24 h per day; however, garments worn as little as 8 h per day significantly improve scar outcomes versus no treatment.


Assuntos
Queimaduras/complicações , Queimaduras/terapia , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/terapia , Vestuário , Bandagens Compressivas , Animais , Autoenxertos , Fenômenos Biomecânicos , Modelos Animais de Doenças , Cooperação do Paciente , Suínos , Transplante Autólogo , Resultado do Tratamento
3.
Plast Reconstr Surg ; 143(2): 310e-321e, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30688890

RESUMO

BACKGROUND: Pressure garment therapy, used for reduction of postburn scarring, is commonly initiated after complete healing of the wound or autograft. Although some clinicians have suggested that earlier treatment may improve outcomes, the effect of early initiation of therapy has not been studied in a controlled environment. METHODS: Full-thickness burns were created on red Duroc pigs, burn eschar was excised, and the wound bed was grafted with split-thickness autografts. Grafts were treated with pressure garments immediately, 1 week (early), or 5 weeks (delayed) after grafting with nontreated grafts as controls. Scar morphology, biomechanics, and gene expression were measured at multiple time points up to 17 weeks after grafting. RESULTS: Grafts that received pressure within 1 week after grafting exhibited no reduction in engraftment rates. Immediate and early application of pressure resulted in scars with decreased contraction, reduced scar thickness, and improved biomechanics compared with controls. Pressure garment therapy did not alter expression of collagen I, collagen III, or transforming growth factor ß1 at the time points investigated; however, expression of matrix metalloproteinase 1 was significantly elevated in the immediate pressure garment therapy group at week 3, whereas the delayed pressure garment therapy and control groups approached baseline levels at this time point. CONCLUSIONS: Early application of pressure garments is safe and effective for reducing scar thickness and contraction and improving biomechanics. This preclinical study suggests that garments should be applied as soon as possible after grafting to achieve greatest benefit, although clinical studies are needed to validate the findings in humans.


Assuntos
Queimaduras/terapia , Cicatriz/prevenção & controle , Bandagens Compressivas , Transplante de Pele/métodos , Cicatrização/fisiologia , Animais , Fenômenos Biomecânicos , Biópsia por Agulha , Queimaduras/patologia , Cicatriz/patologia , Terapia Combinada , Modelos Animais de Doenças , Imuno-Histoquímica , Escala de Gravidade do Ferimento , Cuidados Pós-Operatórios/métodos , Distribuição Aleatória , Suínos , Fatores de Tempo , Transplante Autólogo/métodos
4.
Acta Biomater ; 80: 247-257, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218778

RESUMO

Engineered skin (ES) offers many advantages over split-thickness skin autografts for the treatment of burn wounds. However, ES, both in vitro and after grafting, is often significantly weaker, less elastic and more compliant than normal human skin. Biomechanical properties of ES can be tuned in vitro using electrospun co-axial (CoA) scaffolds. To explore the potential for coaxial scaffold-based ES use in vivo, two CoA scaffolds were fabricated with bioactive gelatin shells and biodegradable synthetic cores of polylactic acid (PLA) and polycaprolactone (PCL), and compared with gelatin monofilament scaffolds. Fibroblast and macrophage production of inflammatory cytokines interleukin 6 (IL-6) and transforming growth factor ß-1 was significantly higher when cultured on PLA and PCL monofilament scaffolds compared to gelatin monofilament scaffolds. The core-shell fiber configuration significantly reduced production of pro-inflammatory cytokines to levels similar to those of gelatin monofilament scaffolds. In vitro, ES mechanical properties were significantly enhanced using CoA scaffolds; however, after grafting CoA- and gelatin-based ES to full-thickness excisional wounds on athymic mice, the in vitro mechanical advantage of CoA grafts was lost. A substantially increased inflammatory response to CoA-based ES was observed, with upregulation of IL-6 expression and a significant M2 macrophage presence. Additionally, expression of matrix metalloproteinase I was upregulated and collagen type I alpha 1 was downregulated in CoA ES two weeks after grafting. These results suggest that while coaxial scaffolds provide the ability to regulate biomechanics in vitro, further investigation of the inflammatory response to core materials is required to optimize this strategy for clinical use. STATEMENT OF SIGNIFICANCE: Engineered skin has been used to treat very large burn injuries. Despite its ability to heal these wounds, engineered skin exhibits reduced biomechanical properties making it challenging to manufacture and surgically apply. Coaxial fiber scaffolds have been utilized to tune the mechanical properties of engineered skin while maintaining optimal biological properties but it is not known how these perform on a patient especially with regards to their inflammatory response. The current study examines the biomechanical and inflammatory properties of coaxial scaffolds and uniaxial scaffolds in vitro and in vivo. The results show that the biological response to the scaffold materials is a critical determinant of tissue properties after grafting with reduced inflammation and rapid scaffold remodeling leading to stronger skin.


Assuntos
Inflamação/patologia , Transplante de Pele , Pele Artificial , Pele/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Cadeia alfa 1 do Colágeno Tipo I , Citocinas/metabolismo , Módulo de Elasticidade , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos Nus , Poliésteres/química , Estresse Mecânico , Resistência à Tração
5.
PLoS One ; 13(6): e0197558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897933

RESUMO

Pressure garment therapy is often prescribed to improve scar properties following full-thickness burn injuries. Pressure garment therapy is generally recommended for long periods of time following injury (1-2 years), though it is plagued by extremely low patient compliance. The goal of this study was to examine the effects of early cessation of pressure garment therapy on scar properties. Full-thickness burn injuries were created along the dorsum of red Duroc pigs. The burn eschar was excised and wound sites autografted with split-thickness skin. Scars were treated with pressure garments within 1 week of injury and pressure was maintained for either 29 weeks (continuous pressure) or for 17 weeks followed by cessation of pressure for an additional 12 weeks (pressure released); scars receiving no treatment served as controls. Scars that underwent pressure garment therapy were significantly smoother and less contracted with decreased scar height compared to control scars at 17 weeks. These benefits were maintained in the continuous pressure group until week 29. In the pressure released group, grafts significantly contracted and became more raised, harder and rougher after the therapy was discontinued. Pressure cessation also resulted in large changes in collagen fiber orientation and increases in collagen fiber thickness. The results suggest that pressure garment therapy effectively improves scar properties following severe burn injury; however, early cessation of the therapy results in substantial loss of these improvements.


Assuntos
Queimaduras/terapia , Cicatriz/terapia , Cicatrização , Animais , Queimaduras/fisiopatologia , Cicatriz/fisiopatologia , Vestuário , Bandagens Compressivas , Humanos , Pressão , Pele/patologia , Suínos , Transplantes/patologia
6.
Burns ; 44(4): 917-930, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29661554

RESUMO

Animal models provide a way to investigate scar therapies in a controlled environment. It is necessary to produce uniform, reproducible scars with high anatomic and biologic similarity to human scars to better evaluate the efficacy of treatment strategies and to develop new treatments. In this study, scar development and maturation were assessed in a porcine full-thickness burn model with immediate excision and split-thickness autograft coverage. Red Duroc pigs were treated with split-thickness autografts of varying thickness: 0.026in. ("thin") or 0.058in. ("thick"). Additionally, the thin skin grafts were meshed and expanded at 1:1.5 or 1:4 to evaluate the role of skin expansion in scar formation. Overall, the burn-excise-autograft model resulted in thick, raised scars. Treatment with thick split-thickness skin grafts resulted in less contraction and reduced scarring as well as improved biomechanics. Thin skin autograft expansion at a 1:4 ratio tended to result in scars that contracted more with increased scar height compared to the 1:1.5 expansion ratio. All treatment groups showed Matrix Metalloproteinase 2 (MMP2) and Transforming Growth Factor ß1 (TGF-ß1) expression that increased over time and peaked 4 weeks after grafting. Burns treated with thick split-thickness grafts showed decreased expression of pro-inflammatory genes 1 week after grafting, including insulin-like growth factor 1 (IGF-1) and TGF-ß1, compared to wounds treated with thin split-thickness grafts. Overall, the burn-excise-autograft model using split-thickness autograft meshed and expanded to 1:1.5 or 1:4, resulted in thick, raised scars similar in appearance and structure to human hypertrophic scars. This model can be used in future studies to study burn treatment outcomes and new therapies.


Assuntos
Autoenxertos/anatomia & histologia , Queimaduras/cirurgia , Cicatriz Hipertrófica/patologia , Cicatriz/patologia , Transplante de Pele/métodos , Animais , Autoenxertos/metabolismo , Queimaduras/complicações , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Tamanho do Órgão , Sus scrofa , Suínos , Fator de Crescimento Transformador beta1/metabolismo
7.
Lasers Surg Med ; 50(1): 78-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28759110

RESUMO

BACKGROUND AND OBJECTIVE: The use of pulsed dye laser (PDL) and fractional CO2 (FX CO2 ) laser therapy to treat and/or prevent scarring following burn injury is becoming more widespread with a number of studies reporting reduction in scar erythema and pruritus following treatment with lasers. While the majority of studies report positive outcomes following PDL or FX CO2 therapy, a number of studies have reported no benefit or worsening of the scar following treatment. The objective of this study was to directly compare the efficacy of PDL, FX CO2 , and PDL + FX CO2 laser therapy in reducing scarring post burn injury and autografting in a standardized animal model. MATERIALS AND METHODS: Eight female red Duroc pigs (FRDP) received 4 standardized, 1 in. x 1 in. third degree burns that were excised and autografted. Wound sites were treated with PDL, FX CO2 , or both at 4, 8, and 12 weeks post grafting. Grafts receiving no laser therapy served as controls. Scar appearance, morphology, size, and erythema were assessed and punch biopsies collected at weeks 4, 8, 12, and 16. At week 16, additional tissue was collected for biomechanical analyses and markers for inflammatory cytokines, extracellular matrix (ECM) proteins, re-epithelialization, pigmentation, and angiogenesis were quantified at all time points using qRT-PCR. RESULTS: Treatment with PDL, FX CO2 , or PDL + FX CO2 resulted in significantly less contraction versus skin graft only controls with no statistically significant difference among laser therapy groups. Scars treated with both PDL and FX CO2 were visually more erythematous than other groups with a significant increase in redness between two and three standard deviations above normal skin redness. Scars treated with FX CO2 were visually smoother and contained significantly fewer wrinkles. In addition, hyperpigmentation was significantly reduced in scars treated with FX CO2 . CONCLUSIONS: The use of fractional carbon dioxide or pulsed dye laser therapy within 1 month of autografting significantly reduced scar contraction versus control, though no statistically significant difference was detected between laser modalities or use of both modalities. Overall, FX CO2 therapy appears to be modestly more effective at reducing erythema, and improving scar texture and biomechanics. The current data adds to prior studies supporting the role of laser therapy in the treatment of burn scars and indicates more study is needed to optimize delivery protocols for maximum efficacy. Lasers Surg. Med. 50:78-87, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Queimaduras/complicações , Cicatriz/prevenção & controle , Lasers de Corante/uso terapêutico , Lasers de Gás/uso terapêutico , Terapia com Luz de Baixa Intensidade , Transplante de Pele , Animais , Queimaduras/terapia , Cicatriz/etiologia , Cicatriz/patologia , Modelos Animais de Doenças , Suínos
8.
Lasers Surg Med ; 49(7): 675-685, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28489283

RESUMO

BACKGROUND AND OBJECTIVE: Fractional CO2 laser therapy has been used to improve scar pliability and appearance; however, a variety of treatment protocols have been utilized with varied outcomes. Understanding the relationship between laser power and extent of initial tissue ablation and time frame for remodeling could help determine an optimum power and frequency for laser treatment. The characteristics of initial injury caused by fractional CO2 laser treatment, the rates of dermal remodeling and re-epithelialization, and the extent of inflammation as a function of laser stacking were assessed in this study in a porcine scar model. MATERIALS AND METHODS: Full-thickness burn wounds were created on female Red Duroc pigs followed by immediate excision of the eschar and split-thickness autografting. Three months after injury, the resultant scars were treated with a fractional CO2 laser with 70 mJ of energy delivered as either a single pulse or stacked for three consecutive pulses. Immediately prior to laser treatment and at 1, 24, 96, and 168 hours post-laser treatment, transepidermal water loss (TEWL), erythema, and microscopic characteristics of laser injury were measured. In addition, markers for inflammatory cytokines, extracellular matrix proteins, and re-epithelialization were quantified at all time points using qRT-PCR. RESULTS: Both treatments produced erythema in the scar that peaked 24 hours after treatment then decreased to basal levels by 168 hours. TEWL increased after laser treatment and returned to normal levels between 24 and 96 hours later. Stacking of the pulses did not significantly increase the depth of ablated wells or extend the presence of erythema. Interleukin 6 and monocyte chemoattractant protein-1 were found to increase significantly 1 hour after treatment but returned to baseline by 24 hours post laser. In contrast, expression of transforming growth factor ß1 and transforming growth factor ß3 increased slowly after treatment with a more modest increase than interleukin 6 and monocyte chemoattractant protein-1. CONCLUSIONS: In the current study, the properties of the ablative zones were not directly proportional to the total amount of energy applied to the porcine scars with the use of triple stacking, resulting in only minor increases to microthermal zone (MTZ) depth and width versus a single pulse. Re-epithelialization and re-establishment of epidermal barrier function were observed in laser treated scars by 48 hours post therapy. Finally, many of the inflammatory genes up-regulated by the laser ablation returned to baseline within 1 week. As a whole, these results suggest that microthermal zones created by FXCO2 treatment re-epithelialize rapidly with the inflammatory response to the laser induced injury largely resolved within 1 week post treatment. Further study is needed to understand the relationship between laser stacking and MTZ properties in human scars in order to evaluate the clinical applicability of the stacking technique. Lasers Surg. Med. 49:675-685, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Cicatriz/cirurgia , Inflamação/etiologia , Lasers de Gás/uso terapêutico , Reepitelização , Animais , Biomarcadores/metabolismo , Queimaduras/complicações , Cicatriz/etiologia , Cicatriz/metabolismo , Feminino , Inflamação/diagnóstico , Inflamação/metabolismo , Distribuição Aleatória , Suínos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...