Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Curr Oncol ; 30(4): 3989-3997, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185415

RESUMO

The detection of gene fusions by RNA-based next-generation sequencing (NGS) is an emerging method in clinical genetic laboratories for oncology biomarker testing to direct targeted therapy selections. A recent Canadian study (CANTRK study) comparing the detection of NTRK gene fusions on different NGS assays to determine subjects' eligibility for tyrosine kinase TRK inhibitor therapy identified the need for recommendations for best practices for laboratory testing to optimize RNA-based NGS gene fusion detection. To develop consensus recommendations, representatives from 17 Canadian genetic laboratories participated in working group discussions and the completion of survey questions about RNA-based NGS. Consensus recommendations are presented for pre-analytic, analytic and reporting aspects of gene fusion detection by RNA-based NGS.


Assuntos
Neoplasias , Receptor trkA , Humanos , Receptor trkA/genética , Receptor trkA/uso terapêutico , Neoplasias/tratamento farmacológico , RNA/uso terapêutico , Consenso , Proteínas de Fusão Oncogênica/genética , Canadá , Sequenciamento de Nucleotídeos em Larga Escala , Fusão Gênica
2.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301669

RESUMO

Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.


Assuntos
Cobre , Doenças Mitocondriais , Camundongos , Animais , Cobre/metabolismo , alfa-Fetoproteínas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Terapia de Imunossupressão
3.
J Mol Diagn ; 25(3): 168-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586421

RESUMO

The Canadian NTRK (CANTRK) study is an interlaboratory comparison ring study to optimize testing for neurotrophic receptor tyrosine kinase (NTRK) fusions in Canadian laboratories. Sixteen diagnostic laboratories used next-generation sequencing (NGS) for NTRK1, NTRK2, or NTRK3 fusions. Each laboratory received 12 formalin-fixed, paraffin-embedded tumor samples with unique NTRK fusions and two control non-NTRK fusion samples (one ALK and one ROS1). Laboratories used validated protocols for NGS fusion detection. Panels included Oncomine Comprehensive Assay v3, Oncomine Focus Assay, Oncomine Precision Assay, AmpliSeq for Illumina Focus, TruSight RNA Pan-Cancer Panel, FusionPlex Lung, and QIAseq Multimodal Lung. One sample was withdrawn from analysis because of sample quality issues. Of the remaining 13 samples, 6 of 11 NTRK fusions and both control fusions were detected by all laboratories. Two fusions, WNK2::NTRK2 and STRN3::NTRK2, were not detected by 10 laboratories using the Oncomine Comprehensive or Focus panels, due to absence of WNK2 and STRN3 in panel designs. Two fusions, TPM3::NTRK1 and LMNA::NTRK1, were challenging to detect on the AmpliSeq for Illumina Focus panel because of bioinformatics issues. One ETV6::NTRK3 fusion at low levels was not detected by two laboratories using the TruSight Pan-Cancer Panel. Panels detecting all fusions included FusionPlex Lung, Oncomine Precision, and QIAseq Multimodal Lung. The CANTRK study showed competency in detection of NTRK fusions by NGS across different panels in 16 Canadian laboratories and identified key test issues as targets for improvements.


Assuntos
Neoplasias , Receptor trkA , Humanos , Receptor trkA/análise , Receptor trkA/genética , Proteínas Tirosina Quinases/genética , Canadá , Proteínas Proto-Oncogênicas/genética , Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fusão Gênica , Análise de Sequência de RNA , Proteínas de Fusão Oncogênica/genética , Autoantígenos , Proteínas de Ligação a Calmodulina/genética , Proteínas Serina-Treonina Quinases/genética
4.
Cell Rep ; 39(8): 110856, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613581

RESUMO

Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.


Assuntos
Infecções por Vírus de DNA , Interferon Tipo I , Leucemia Mieloide Aguda , Trifosfato de Adenosina , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais
5.
Am J Clin Pathol ; 158(1): 105-111, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195689

RESUMO

OBJECTIVES: In precision medicine, where oncologic management is tailored to the individual's clinical and genetic profiles, advanced diagnostic testing provides prognostic information and guides management in a growing number of malignancies. There is a need to capture the work pathologists perform to meet this demand by providing medically relevant, timely, and accurate testing results. This work includes not only direct patient consults (interpretation of results and issuing reports) but the administrative and medical oversight as well as the research needed to provide the necessary quality assurance, quality control, direction, and framework for the laboratory. METHODS: An expert panel of Canadian pathologists involved in advanced diagnostics was convened to establish and beta test a model for workload assessment in advanced diagnostics. RESULTS: All aspects of the advanced diagnostics workload were detailed and applied to models based on members' experience, including medical oversight, administration, and the introduction of new testing and platforms. Models for biomarker testing were developed for simple and complex or multiplexed assays, and a detailed model was developed to assess the workload for next-generation sequencing-based assays. CONCLUSIONS: This paper provides the first detailed proposal for capturing an advanced diagnostic workload to enable appropriate pathologist allotment for performing all the steps required to run an advanced diagnostic service.


Assuntos
Neoplasias , Medicina de Precisão , Canadá , Humanos , Oncologia , Neoplasias/genética , Medicina de Precisão/métodos , Carga de Trabalho
6.
Cancers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053466

RESUMO

Tracking immune responses is complex due to the mixture of cell types, variability in cell populations, and the dynamic environment. Tissue biopsies and blood analysis can identify infiltrating and circulating immune cells; however, due to the dynamic nature of the immune response, these are prone to sampling errors. Non-invasive targeted molecular imaging provides a method to monitor immune response, which has advantages of providing whole-body images, being non-invasive, and allowing longitudinal monitoring. Three non-specific Fc-containing proteins were labeled with near-infrared dye IRDye800CW and used as imaging probes to assess tumor-infiltrating immune cells in FaDu and A-431 xenograft models. We showed that Fc domains localize to tumors and are visible by fluorescent imaging. This tumor localization appears to be based on binding tumor-associated immune cells and some xenografts showed higher fluorescent signals than others. The Fc domain alone bound to different human immune cell types. The Fc domain can be a valuable research tool to study innate immune response.

7.
BMC Cancer ; 21(1): 270, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711962

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is a target for cancer therapy as it is overexpressed in a wide variety of cancers. Therapeutic antibodies that bind EGFR are being evaluated in clinical trials as imaging agents for positron emission tomography and image-guided surgery. However, some of these antibodies have safety concerns such as infusion reactions, limiting their use in imaging applications. Nimotuzumab is a therapeutic monoclonal antibody that is specific for EGFR and has been used as a therapy in a number of countries. METHODS: Formulation of IRDye800CW-nimotuzumab for a clinical trial application was prepared. The physical, chemical, and pharmaceutical properties were tested to develop the specifications to determine stability of the product. The acute and delayed toxicities were tested and IRDye800CW-nimotuzumab was determined to be non-toxic. Non-compartmental pharmacokinetics analysis was used to determine the half-life of IRDye800CW-nimotuzumab. RESULTS: IRDye800CW-nimotuzumab was determined to be non-toxic from the acute and delayed toxicity study. The half-life of IRDye800CW-nimotuzumab was determined to be 38 ± 1.5 h. A bi-exponential analysis was also used which gave a t1/2 alpha of 1.5 h and t1/2 beta of 40.8 h. CONCLUSIONS: Here, we show preclinical studies demonstrating that nimotuzumab conjugated to IRDye800CW is safe and does not exhibit toxicities commonly associated with EGFR targeting antibodies.


Assuntos
Drogas em Investigação/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/toxicidade , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/farmacocinética , Benzenossulfonatos/toxicidade , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Estabilidade de Medicamentos , Drogas em Investigação/farmacologia , Drogas em Investigação/toxicidade , Receptores ErbB/antagonistas & inibidores , Feminino , Meia-Vida , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/toxicidade , Indóis/administração & dosagem , Indóis/farmacocinética , Indóis/toxicidade , Aplicação de Novas Drogas em Teste , Masculino , Camundongos , Neoplasias/patologia , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Gynecol Pathol ; 39(6): 514-521, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31569187

RESUMO

Immunostaining for p53 is widely but variably used when diagnosing endometrial carcinoma (EC). Mutant-pattern p53 staining can support a diagnosis of serous carcinoma, and also serve as a surrogate test for identifying the "serous-like" subset of aggressive EC identified by The Cancer Genome Atlas characterized by high numbers of somatic copy number abnormalities. We, retrospectively, assessed WHO histotype, usage of p53 immunostaining, and p53 status in a consecutive series of biopsies showing EC from a single hospital. Of 79 ECs, 59 (75%) were low-grade EC (LGEC), 13 (16%) high-grade EC (HGEC), and 7 (9%) were serous. p53 immunostaining was performed at the time of diagnosis in 27/79 (34%) biopsies; 6/7 of serous histotype, 11/13 HGEC, and 10/59 LGEC. Mutant-pattern p53 staining was present in 6/6 serous, 2/11 HGEC, and 2/10 LGEC. The remaining 53 tumors subsequently had p53 immunostaining done; all 49 LGEC showed wild-type staining and the serous carcinoma and 1/2 HGEC showed mutant pattern staining. While there are no guidelines on using p53 in endometrial biopsies, this study shows consistent usage in high-grade histotypes and variable usage in LGEC. As 100% (7/7) of serous EC and 3% (2/59) of the LGECs showed mutant-pattern p53 staining, histotype may serve as a surrogate for p53 assessment, such that only HGEC or ambiguous carcinomas should be routinely subjected to p53 immunostaining.


Assuntos
Neoplasias do Endométrio/química , Neoplasias do Endométrio/diagnóstico , Mutação , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética , Biópsia , Cistadenocarcinoma Seroso/química , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/patologia , Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Estudos Retrospectivos
9.
Sci Rep ; 9(1): 11227, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375703

RESUMO

DNA damaging chemotherapies are successful in cancer therapy, however, the damage can be reversed by DNA repair mechanisms that may be up-regulated in cancer cells. We hypothesized that inhibiting RAD51, a protein involved in homologous recombination DNA repair, would block DNA repair and restore the effectiveness of DNA damaging chemotherapy. We used phage-display to generate a novel synthetic antibody fragment that bound human RAD51 with high affinity (KD = 8.1 nM) and inhibited RAD51 ssDNA binding in vitro. As RAD51 is an intracellular target, we created a corresponding intrabody fragment that caused a strong growth inhibitory phenotype on human cells in culture. We then used a novel cell-penetrating peptide "iPTD" fusion to generate a therapeutically relevant antibody fragment that effectively entered living cells and enhanced the cell-killing effect of a DNA alkylating agent. The iPTD may be similarly useful as a cell-penetrating peptide for other antibody fragments and open the door to numerous intracellular targets previously off-limits in living cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Fragmentos de Imunoglobulinas/uso terapêutico , Rad51 Recombinase/antagonistas & inibidores , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Humanos , Fragmentos de Imunoglobulinas/farmacologia , Biblioteca de Peptídeos
10.
Nucleic Acids Res ; 47(9): e50, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30854567

RESUMO

Next-generation sequencing (NGS) technologies have been employed in several phage display platforms for analyzing natural and synthetic antibody sequences and for identifying and reconstructing single-chain variable fragments (scFv) and antigen-binding fragments (Fab) not found by conventional ELISA screens. In this work, we developed an NGS-assisted antibody discovery platform by integrating phage-displayed, single-framework, synthetic Fab libraries. Due to limitations in attainable read and amplicon lengths, NGS analysis of Fab libraries and selection outputs is usually restricted to either VH or VL. Since this information alone is not sufficient for high-throughput reconstruction of Fabs, we developed a rapid and simple method for linking and sequencing all diversified CDRs in phage Fab pools. Our method resulted in a reliable and straightforward platform for converting NGS information into Fab clones. We used our NGS-assisted Fab reconstruction method to recover low-frequency rare clones from phage selection outputs. While previous studies chose rare clones for rescue based on their relative frequencies in sequencing outputs, we chose rare clones for reconstruction from less-frequent CDRH3 lengths. In some cases, reconstructed rare clones (frequency ∼0.1%) showed higher affinity and better specificity than high-frequency top clones identified by Sanger sequencing, highlighting the significance of NGS-based approaches in synthetic antibody discovery.


Assuntos
Técnicas de Visualização da Superfície Celular , Regiões Determinantes de Complementaridade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anticorpos de Cadeia Única/genética , Afinidade de Anticorpos/genética , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Biblioteca de Peptídeos
11.
Am J Surg Pathol ; 43(4): 531-537, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30585826

RESUMO

Endometrial clear cell carcinoma (ECCC) is an uncommon histotype without unique identified molecular alterations. Recently, The Cancer Genome Atlas molecular subtypes have been reported in ECCC. ECCC cases were collected from 11 institutions with diagnoses confirmed by morphologic review and immunohistochemistry. DNA mismatch repair (MMR) proteins, p53 expression, and ARID1A expression was assessed by immunohistochemistry on tissue microarrays. Targeted next-generation sequencing was completed for POLE, TP53, KRAS, and PIK3CA. Pathogenicity of mutations was determined using MutationTaster and PolyPhen databases. For p53, immunohistochemistry and sequencing were complimentarily used to assess the p53 status. Of 57 cases, 46 were considered prototypical ECCC by morphology and immunohistochemical profile (Napsin A-positive and ER-negative). Three cases were excluded because of insufficient sample for complete immunohistochemical analysis, and 6 had failed sequencing, resulting in 37 cases. Of the 37 remaining cases, 6/37 (16%) had predicted pathogenic mutations in the exonuclease domain of POLE with an allelic frequency >10%; however, no hot-spot mutations were identified. No cases were MMR-deficient. The gene most commonly affected was TP53 (59%, 22/37), followed by KRAS (13%, 2/15) and PIK3CA (13%, 2/15). The current study is the largest molecular analysis of pure ECCC reported to date. When strict classification criteria are applied, MMR-deficient and POLE mutated subtypes are not represented. Further consensus on what represents a deleterious POLE mutations is needed. The findings support separately studying histologically/immunohistochemically defined ECCC to identify characteristic molecular alterations in future studies.


Assuntos
Adenocarcinoma de Células Claras/genética , Reparo de Erro de Pareamento de DNA/genética , DNA Polimerase II/genética , Neoplasias do Endométrio/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação
12.
Oncogene ; 37(30): 4073-4093, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700392

RESUMO

Triple-negative breast cancer (TNBC) tumours that lack expression of oestrogen, and progesterone receptors, and do not overexpress the HER2 receptor represent the most aggressive breast cancer subtype, which is characterised by the resistance to therapy in frequently relapsing tumours and a high rate of patient mortality. This is likely due to the resistance of slowly proliferating tumour-initiating cells (TICs), and understanding molecular mechanisms that control TICs behaviour is crucial for the development of effective therapeutic approaches. Here, we present our novel findings, indicating that an intrinsically catalytically inactive member of the Eph group of receptor tyrosine kinases, EPHB6, partially suppresses the epithelial-mesenchymal transition in TNBC cells, while also promoting expansion of TICs. Our work reveals that EPHB6 interacts with the GRB2 adapter protein and that its effect on enhancing cell proliferation is mediated by the activation of the RAS-ERK pathway, which allows it to elevate the expression of the TIC-related transcription factor, OCT4. Consistent with this, suppression of either ERK or OCT4 activities blocks EPHB6-induced pro-proliferative responses. In line with its ability to trigger propagation of TICs, EPHB6 accelerates tumour growth, potentiates tumour initiation and increases TIC populations in xenograft models of TNBC. Remarkably, EPHB6 also suppresses tumour drug resistance to DNA-damaging therapy, probably by forcing TICs into a more proliferative, drug-sensitive state. In agreement, patients with higher EPHB6 expression in their tumours have a better chance for recurrence-free survival. These observations describe an entirely new mechanism that governs TNBC and suggest that it may be beneficial to enhance EPHB6 action concurrent with applying a conventional DNA-damaging treatment, as it would decrease drug resistance and improve tumour elimination.


Assuntos
Receptores da Família Eph/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Dano ao DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas ras/metabolismo
13.
Oncotarget ; 9(24): 17117-17132, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682209

RESUMO

RATIONALE: Epidermal growth factor receptor (EGFR) upregulation is associated with enhanced proliferation and drug resistance in a number of cancers. Nimotuzumab is a humanized monoclonal antibody with high affinity for EGFR. The objective of this study was to determine if 89Zr-DFO-nimotuzumab could be suitable for human use as a PET probe for quantifying EGFR in vivo. METHODS: To evaluate the pharmacokinetics, biodistribution, microPET imaging, radiation dosimetry, and normal tissue toxicity in tumor and non-tumor bearing mice of 89Zr-desferoxamine-nimotuzumab (89Zr-DFO-nimotuzumab) of a product prepared under GMP conditions. Nimotuzumab was conjugated to DFO and radiolabeled with 89Zr. 89Zr-DFO-nimotuzumab was characterized by in vitro gel-electrophoresis, biolayer interferometry (BLI) and flow cytometry. 89Zr-DFO-nimotuzumab was evaluated in vivo by microPET and ex vivo by biodistribution in healthy and EGFR-positive tumor bearing mice. RESULTS: Flow cytometry with A431 cells showed no significant difference in the dissociation constant of nimotuzumab (13 ± 2 nM) compared with DFO-nimotuzumab (17 ± 4 nM). PET imaging in mice xenografts showed persistently high tumor uptake with the highest uptake obtained in DLD-1 xenograft (18.3 %IA/cc) at 168 hp.i. The projected human effective dose was low and was 0.184 mSv/MBq (0.679 rem/mCi) in females and 0.205 mSv/MBq (0.757 rem/mCi) in males. There was no apparent normal tissue toxicity as shown by cell blood counts and blood biochemistry analyses at 168-fold and 25-fold excess of the projected human radioactive and mass dose of the agent. CONCLUSION: 89Zr-DFO-nimotuzumab had low organ absorbed dose and effective dose that makes it suitable for potential human use.

14.
Cell Chem Biol ; 23(3): 381-91, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26991103

RESUMO

Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, ß-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/farmacologia , Recombinases Rec A/antagonistas & inibidores , Animais , Antibacterianos/química , Inibidores Enzimáticos/química , Feminino , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Indóis/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Relação Estrutura-Atividade
15.
BMC Genomics ; 16: 350, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943404

RESUMO

BACKGROUND: DNA methylation has essential roles in transcriptional regulation, imprinting, X chromosome inactivation and other cellular processes, and aberrant CpG methylation is directly involved in the pathogenesis of human imprinting disorders and many cancers. To address the need for a quantitative and highly multiplexed bisulfite sequencing method with long read lengths for targeted CpG methylation analysis, we developed single-molecule real-time bisulfite sequencing (SMRT-BS). RESULTS: Optimized bisulfite conversion and PCR conditions enabled the amplification of DNA fragments up to ~1.5 kb, and subjecting overlapping 625-1491 bp amplicons to SMRT-BS indicated high reproducibility across all amplicon lengths (r=0.972) and low standard deviations (≤0.10) between individual CpG sites sequenced in triplicate. Higher variability in CpG methylation quantitation was correlated with reduced sequencing depth, particularly for intermediately methylated regions. SMRT-BS was validated by orthogonal bisulfite-based microarray (r=0.906; 42 CpG sites) and second generation sequencing (r=0.933; 174 CpG sites); however, longer SMRT-BS amplicons (>1.0 kb) had reduced, but very acceptable, correlation with both orthogonal methods (r=0.836-0.897 and r=0.892-0.927, respectively) compared to amplicons less than ~1.0 kb (r=0.940-0.951 and r=0.948-0.963, respectively). Multiplexing utility was assessed by simultaneously subjecting four distinct CpG island amplicons (702-866 bp; 325 CpGs) and 30 hematological malignancy cell lines to SMRT-BS (average depth of 110X), which identified a spectrum of highly quantitative methylation levels across all interrogated CpG sites and cell lines. CONCLUSIONS: SMRT-BS is a novel, accurate and cost-effective targeted CpG methylation method that is amenable to a high degree of multiplexing with minimal clonal PCR artifacts. Increased sequencing depth is necessary when interrogating longer amplicons (>1.0 kb) and the previously reported bisulfite sequencing PCR bias towards unmethylated DNA should be considered when measuring intermediately methylated regions. Coupled with an optimized bisulfite PCR protocol, SMRT-BS is capable of interrogating ~1.5 kb amplicons, which theoretically can cover ~91% of CpG islands in the human genome.


Assuntos
Metilação de DNA/efeitos dos fármacos , Análise de Sequência de DNA/métodos , Sulfitos/farmacologia , Linhagem Celular Tumoral , Genoma Humano/genética , Humanos , Reação em Cadeia da Polimerase , Fatores de Tempo
16.
Cell Signal ; 26(12): 2645-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152371

RESUMO

Ligand-induced internalisation and subsequent downregulation of receptor tyrosine kinases (RTKs) serve to determine biological outputs of their signalling. Intrinsically kinase-deficient RTKs control a variety of biological responses, however, the mechanism of their downregulation is not well understood and its analysis is focused exclusively on the ErbB3 receptor. The Eph group of RTKs is represented by the EphA and EphB subclasses. Each bears one kinase-inactive member, EphA10 and EphB6, respectively, suggesting an important role for these molecules in the Eph signalling network. While EphB6 effects on cell behaviour have been assessed, the mechanism of its downregulation remains elusive. Our work reveals that EphB6 and its kinase-active relative, and signalling partner, EphB4, are downregulated in a similar manner in response to their common ligand, ephrin-B2. Following stimulation, both receptors are internalised through clathrin-coated pits and are degraded in lysosomes. Their targeting for lysosomal degradation relies on the activity of an early endosome regulator, the Rab5 GTPase, as this process is inhibited in the presence of a Rab5 dominant-negative mutant. EphB6 also interacts with the Hsp90 chaperone and EphB6 downregulation is preceded by their rapid dissociation. Moreover, the inhibition of Hsp90 results in EphB6 degradation, mimicking its ligand-induced downregulation. These processes appear to rely on overlapping mechanisms, since Hsp90 inhibition does not significantly enhance ligand-induced EphB6 elimination. Taken together, our observations define a novel mechanism for intrinsically kinase-deficient RTK downregulation and support an intriguing model, where Hsp90 dissociation acts as a trigger for ligand-induced receptor removal.


Assuntos
Clatrina/metabolismo , Regulação para Baixo/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphB6/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular , Endossomos/metabolismo , Efrina-B2/metabolismo , Células HEK293 , Humanos , Ligantes , Lisossomos/metabolismo , Ligação Proteica/fisiologia , Receptores da Família Eph/metabolismo
17.
Chembiochem ; 14(16): 2119-25, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24030821

RESUMO

Going against tradition: although most kinase inhibitors are ATP competitive, lariat peptides inhibit Abl kinase activity in an ATP-uncompetitive manner. Further, lariat peptides discriminated Src family kinases, and recognize the allosteric region that lies adjacent to the ATP binding pocket in the Abl kinase catalytic cleft.


Assuntos
Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Peptídeos/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo
18.
Cancer Res ; 70(3): 1141-53, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20086179

RESUMO

Cancer invasiveness plays a major role in the mortality of patients with solid tumors, and deregulated cell adhesion and migration are suspected to drive invasive behavior. Since Eph receptor tyrosine kinases control both cell attachment and migration, they may act to define the level of cancer invasiveness. EphB6 is an unusual Eph receptor, lacking catalytic capacity due to alterations in its kinase domain. Interestingly, increased metastatic activity is associated with reduced EphB6 receptor expression in several tumor types, including breast cancer. This emphasizes the potential of EphB6 to act as a suppressor of cancer aggressiveness; however, the mechanism of its action is not well understood. We show that restoration of EphB6 expression in invasive breast cancer cells supports actin-dependent spreading and attachment and blocks invasiveness. EphB6 stimulation induces its tyrosine phosphorylation, which is crucial for its function and is mediated by the EphB4 receptor. This is accompanied by EphB6-c-Cbl interaction and phosphorylation of c-Cbl partner, the Abl kinase. Cbl silencing suppresses Abl phosphorylation, cell adhesion, and morphologic changes and blocks the ability of EphB6 to inhibit invasiveness, confirming its importance for EphB6 activity. Despite its crucial role in EphB6 responses, EphB4 also acts in an EphB6-independent manner to enhance invasive activity, suggesting that cancer invasiveness may be defined by the balance in the EphB6-EphB4 system. Overall, our observations suggest a new role for EphB6 in suppressing cancer invasiveness through c-Cbl-dependent signaling, morphologic changes, and cell attachment and indicate that EphB6 may represent a useful prognostic marker and a promising target for therapeutic approaches.


Assuntos
Movimento Celular , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Actinas/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Fibronectinas/metabolismo , Humanos , Invasividade Neoplásica , Ligação Proteica , Proteínas Proto-Oncogênicas c-cbl/genética , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptores da Família Eph , Transfecção
19.
Chem Biol ; 16(11): 1148-57, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19942138

RESUMO

Functional genomic analyses provide information that allows hypotheses to be formulated on protein function. These hypotheses, however, need to be validated using reverse genetic approaches, which are difficult to perform on a large scale and in diploid organisms. We developed a genetic screen for isolating "lariat" peptides that function as trans dominant inhibitors of protein function. A lariat consists of a lactone-cyclized peptide with a covalently attached transcription activation domain, which allows combinatorial lariat libraries to be screened for protein interactions using the yeast two-hybrid assay. We isolated lariats against the bacterial repressor protein LexA. LexA regulates bacterial SOS response and LexA mutants that cannot undergo autoproteolysis make bacteria more sensitive to, and inhibit resistance against, cytotoxic reagents. We showed that an anti-LexA lariat blocked LexA autoproteolysis and potentiated the antimicrobial activity of mitomycin C.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Lactonas/química , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunoprecipitação da Cromatina , Técnicas de Química Combinatória , Genes Reporter , Lactonas/farmacologia , Biblioteca de Peptídeos , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Resposta SOS em Genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Ressonância de Plasmônio de Superfície , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
20.
Carcinogenesis ; 30(12): 2117-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843644

RESUMO

To evaluate loss of imprinting (LOI) and expression of the IGF2 gene in matched esophageal normal and adenocarcinoma tissues, we studied a prospective cohort of 77 patients who underwent esophageal resection between 1998 and 2003. IGF2 imprinting status was determined by reverse transcription-polymerase chain reaction (PCR) following ApaI digestion, and quantitative PCR was used to evaluate IGF2 expression, which was correlated with clinicopathologic findings, disease-free and overall survival. In total, 32% (14/44) of informative tissues showed loss of IGF2 imprinting, with a strong correlation between the tumor and normal esophageal epithelia (Kappa = 0.89, P < 0.01). Normal epithelia with LOI had increased expression of IGF2 [median: 2.91, 95% confidence interval (CI): 0.93-5.06] compared with imprinted normal epithelia (median: 1.13, 95% CI: 0.85-1.39) (P = 0.03). In contrast, tumors with LOI had significantly reduced IGF2 expression (median: 1.87, 95% CI: 0.53-5.21) compared with normally imprinted tumors (median: 6.79, 95% CI: 3.39-15.89) (P = 0.016). Patients below the age of 65 years with normally imprinted tumors had significantly reduced 5 year disease-free survival (DFS) (24%) compared with patients whose tumors had LOI for IGF2 (55%) (P = 0.03). Cox regression analysis showed that IGF2 overexpression was associated with significantly reduced disease-free survival (P = 0.04). We conclude that in a subgroup of younger patients, loss of IGF2 imprinting was associated with improved outcome following esophageal resection. Expression of IGF2 in esophageal adenocarcinoma and normal esophageal epithelia depended on imprinting status and tissue type, suggesting novel molecular regulatory mechanisms in esophageal tumorigenesis.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Esofágicas/metabolismo , Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Impressão Genômica , Fator de Crescimento Insulin-Like II/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...