Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Appl ; 20(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38618629

RESUMO

III-V semiconductor quantum dots (QDs) are near-ideal and versatile single-photon sources. Because of the capacity for monolithic integration with photonic structures as well as optoelectronic and optomechanical systems, they are proving useful in an increasingly broad application space. Here, we develop monolithic circular dielectric gratings on bulk substrates - as opposed to suspended or wafer-bonded substrates - for greatly improved photon collection from InAs quantum dots. The structures utilize a unique two-tiered distributed Bragg reflector (DBR) structure for vertical electric field confinement over a broad angular range. Opposing "openings" in the cavities induce strongly polarized QD luminescence without harming collection efficiencies. We describe how measured enhancements depend on the choice of collection optics. This is important to consider when evaluating the performance of any photonic structure that concentrates farfield emission intensity. Our cavity designs are useful for integrating QDs with other quantum systems that require bulk substrates, such as surface acoustic wave phonons.

2.
ACS Omega ; 7(26): 22477-22483, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811896

RESUMO

Phased-array metasurfaces grant the ability to arbitrarily shape the wavefront of light. As such, they have been used as various optical elements including waveplates, lenses, and beam deflectors. Luminescent metasurfaces, on the other hand, have largely comprised uniform arrays and are therefore unable to provide the same control over the wavefront of emitted light. Recently, phased-array control of the wavefront of spontaneous emission has been experimentally demonstrated in luminescent phased-array metalenses and beam deflectors. However, current luminescent metasurface beam deflectors exhibit unidirectional emission for only p-polarized light. In this paper, we use a reciprocal simulation strategy to explain the polarization disparity and improve the directionality of incoherent emission from current quantum-well emitting phased-array metasurfaces. We also design complementary metasurfaces to direct emission from systems where emission originates from alternate quantum mechanical processes.

3.
Phys Rev Lett ; 127(17): 173604, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739261

RESUMO

The optical response of crystals is most commonly attributed to electric dipole interactions between light and matter. Although metamaterials support "artificial" magnetic resonances supported by mesoscale structuring, there are no naturally occurring materials known to exhibit a nonzero optical-frequency magnetic polarizability. Here, we experimentally demonstrate and quantify a naturally occurring nonzero magnetic polarizability in a layered semiconductor system: two-dimensional (Ruddlesden-Popper phase) hybrid organic-inorganic perovskites. These results demonstrate the only known material with an optical-frequency permeability that differs appreciably from vacuum, informing future efforts to find, synthesize, or exploit atomic-scale optical magnetism for novel optical phenomena such as negative index of refraction and electromagnetic cloaking.

4.
Nat Commun ; 12(1): 3591, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127655

RESUMO

Phased-array metasurfaces have been extensively used for wavefront shaping of coherent incident light. Due to the incoherent nature of spontaneous emission, the ability to similarly tailor photoluminescence remains largely unexplored. Recently, unidirectional photoluminescence from InGaN/GaN quantum-well metasurfaces incorporating one-dimensional phase profiles has been shown. However, the possibility of generating arbitrary two-dimensional waveforms-such as focused beams-is not yet realized. Here, we demonstrate two-dimensional metasurface axicons and lenses that emit collimated and focused beams, respectively. First, we develop off-axis meta-axicon/metalens equations designed to redirect surface-guided waves that dominate the natural emission pattern of quantum wells. Next, we show that photoluminescence properties are well predicted by passive transmission results using suitably engineered incident light sources. Finally, we compare collimating and focusing performances across a variety of different light-emitting metasurface axicons and lenses. These generated two-dimensional phased-array photoluminescence waveforms facilitate future development of light sources with arbitrary functionalities.

6.
ACS Nano ; 14(7): 8958-8968, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32667192

RESUMO

Recently, unconventional bright magnetic dipole (MD) radiation was observed from two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs). According to commonly accepted HOIP band structure calculations, such MD light emission from the ground-state exciton should be strictly symmetry forbidden. These results suggest that MD emission arises in conjunction with an as-yet unidentified symmetry-breaking mechanism. In this paper, we show that MD light emission originates from a self-trapped p-like exciton stabilized at energies below the primary electric dipole (ED)-emitting 1s exciton. Using suitable combinations of sample and collection geometries, we isolate the distinct temperature-dependent properties of the ED and MD photoluminescence (PL). We show that the ED emission wavelength is nearly constant with temperature, whereas the MD emission wavelength exhibits substantial red shifts with heating. To explain these results, we derive a microscopic model comprising two distinct parity exciton states coupled to lattice distortions. The model explains many experimental observations, including the thermal red shift, the difference in emission wavelengths, and the relative intensities of the ED and MD emission. Thermodynamic analysis of temperature-dependent PL reveals that the MD emission originates from a locally distorted structure. Finally, we demonstrate unusual hysteresis effects of the MD-emitting state near structural phase transitions. We hypothesize that this is another manifestation of the local distortions, indicating that they are insensitive to phase changes in the equilibrium lattice structure.

7.
Sci Adv ; 6(6): eaay4900, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32083181

RESUMO

Light-matter interactions in semiconductors are uniformly treated within the electric dipole approximation; multipolar interactions are considered "forbidden." We experimentally demonstrate that this approximation inadequately describes light emission in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs), solution processable semiconductors with promising optoelectronic properties. By exploiting the highly oriented crystal structure, we use energy-momentum spectroscopies to demonstrate that an exciton-like sideband in 2D HOIPs exhibits a multipolar radiation pattern with highly directed emission. Electromagnetic and quantum-mechanical analyses indicate that this emission originates from an out-of-plane magnetic dipole transition arising from the 2D character of electronic states. Symmetry arguments and temperature-dependent measurements suggest a dynamic symmetry-breaking mechanism that is active over a broad temperature range. These results challenge the paradigm of electric dipole-dominated light-matter interactions in optoelectronic materials, provide new perspectives on the origins of unexpected sideband emission in HOIPs, and tease the possibility of metamaterial-like scattering phenomena at the quantum-mechanical level.

8.
J Am Chem Soc ; 141(48): 19099-19109, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697076

RESUMO

Hybrid halide double perovskites are a class of compounds attracting growing interest because of their richness of structure and property. Two-dimensional (2D) derivatives of hybrid double perovskites are formed by the incorporation of organic spacer cations into three-dimensional (3D) double perovskites. Here, we report a series of seven new layered double perovskite halides with propylammonium (PA), octylammonium (OCA), and 1,4-butyldiammonium (BDA) cations. The general formulas of the compounds are AmMIMIIIX8 (single-layered Ruddlesden-Popper type with m = 4 and A = PA or OCA, and single-layered Dion-Jacobson type with m = 2 and A = BDA, MI = Ag, MIII= In or Bi, X = Cl or Br) and PA2CsMIMIIIBr7 (bilayered, with MI = Ag, MIII = In or Bi). These families of compounds demonstrate great versatility, with tunable layer thickness, the ability to vary the interlayer spacing, and the ability to selectively tune the band gap by varying the MI and MIII cations along with the halide anions. The band gap of the single-layered materials varies from 2.41 eV for PA4AgBiBr8 to 3.96 eV for PA4AgInCl8. Photoluminescent emission spectra of the layered double perovskites at low-temperature (100 K) are reported, and density functional theory electronic structure calculations are presented to understand the nature of the band gap evolution. The development of new structural and compositions in layered double perovskite halides enhances the understanding of structure-property relations in this important family.

9.
ACS Nano ; 13(9): 10745-10753, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31491078

RESUMO

Hybrid organic/inorganic perovskites (HOIPs) are of great interest for optoelectronic applications due to their quality electronic and optical properties and the exceptional ease of room-temperature synthesis. Layered HOIP structures, e.g., Ruddlesden-Popper phases, offer additional synthetic means to define self-assembling multiple quantum well structures. Measurements of Ruddlesden-Popper HOIP optical constants are currently lacking, but are critical for both a fundamental understanding as well as optoelectronic device design. Here, we use momentum-resolved optical techniques to measure error-constrained complex uniaxial optical constants of layered lead-iodide perovskites incorporating a variety of organic spacer molecules. We demonstrate how large optical anisotropies measured in these materials arise primarily from classical dielectric inhomogeneities rather than the two-dimensional nature of the electronic states. We subsequently show how variations among these materials can be understood within a classical effective-medium model that accounts for dielectric inhomogeneity. We find agreement between experimentally inferred dielectric properties and quantum-mechanical calculations only after accounting for these purely classical effects. This work provides a library of optical constants for this class of materials and clarifies the origins of large absorption and photoluminescence anisotropies witnessed in these and other layered nanomaterials.

10.
ACS Appl Mater Interfaces ; 11(28): 25313-25321, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268293

RESUMO

Mixed halide hybrid organic-inorganic perovskites have band gaps that span the visible spectrum making them candidates for optoelectronic devices. Transport of the halide atoms in methyl ammonium lead iodide (MAPbI3) and its alloys with bromine has been observed in both dark and under illumination. While halide transport upon application of electric fields has received much attention, less is known regarding bromide and iodide interdiffusion down concentration gradients. This work provides an upper bound on the bromide-iodide interdiffusion coefficient Di in thin films of MAPb(BrxI1-x)3 using a diffusion couples of lateral heterostructures. The upper bound of Di was extracted from changes in the interface profiles of the heterostructures upon exposure to heat. The stability of thoroughly heated interfacial profiles suggests that the miscibility gap extends to higher temperatures and to a higher fractional composition of bromine than predicted by theory. The results of this work provide guidance for compositions of thermally stable heterostructures of hybrid halide perovskites.

11.
Nano Lett ; 17(10): 6151-6156, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28910110

RESUMO

Due to strong electric field enhancements, surface plasmon polaritons (SPPs) are capable of drastically increasing light-molecule coupling in organic optoelectronic devices. The electric field enhancement, however, is anisotropic, offering maximal functional benefits if molecules are oriented perpendicular to the interface. To provide a clear demonstration of this orientation dependence, we study SPP dispersion and SPP-mediated photoluminescence at a model Au/small-molecule interface where identical molecules can be deposited with two very different molecular backbone orientations depending on processing conditions. First, we demonstrate that thin films of p-SIDT(FBTTh2)2 can be deposited with either all "in-plane" (parallel to substrate) or a 50/50 mix of in-plane/"out-of-plane" (perpendicular to substrate) optical transition dipoles by the absence or presence, respectively, of diiodooctane during spin-coating. In contrast to typical orientation control observed in organic thin films, for this particular molecule, this corresponds to films with conjugated backbones purely in-plane, or with a 50/50 mix of in-plane/out-of-plane backbones. Then, using momentum-resolved reflectometry and momentum-resolved photoluminescence, we study and quantify changes in SPP dispersion and photoluminescence intensity arising solely from changes in molecular orientation. We demonstrate increased SPP momentum and a 2-fold enhancement in photoluminescence for systems with out-of-plane oriented transition dipoles. These results agree well with theory and have direct implications for the design and analysis of organic optoelectronic devices.

12.
Opt Express ; 24(25): 28842-28857, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958527

RESUMO

Determining optical constants of thin material films is important for characterizing their electronic excitations and for the design of optoelectronic devices. Spectroscopic ellipsometry techniques have emerged as the predominant approach for measuring thin-film optical constants. However, ellipsometry methods suffer from complications associated with highly model-dependent, multi-parameter spectral fitting procedures. Here, we present a model-blind, momentum-resolved reflectometry technique that yields accurate and precise optical constants, with quantifiable error estimates, even for film thicknesses less than 50 nm. These capabilities are demonstrated by interrogating an optical absorption resonance in films of the polymer P(NDI2OD-T2). We show that this approach produces exceptional agreement with UV-Vis-NIR absorption measurements, while simultaneously avoiding the need to construct complicated multi-oscillator spectral models. Finally, we use this procedure to resolve subtle differences in the out-of-plane optical properties of different film morphologies that were previously obscured in ellipsometry measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...