Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(10): e23194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37702880

RESUMO

MAP2 is a critical cytoskeletal regulator in neurons. The phosphorylation of MAP2 (MAP2-P) is well known to regulate core functions of MAP2, including microtubule (MT)/actin binding and facilitation of tubulin polymerization. However, site-specific studies of MAP2-P function in regions outside of the MT-binding domain (MTBD) are lacking. We previously identified a set of MAP2 phosphopeptides which are differentially expressed and predominantly increased in the cortex of individuals with schizophrenia relative to nonpsychiatric comparison subjects. The phosphopeptides originated not from the MTBD, but from the flanking proline-rich and C-terminal domains of MAP2. We sought to understand the contribution of MAP2-P at these sites on MAP2 function. To this end, we isolated a series of phosphomimetic MAP2C constructs and subjected them to cell-free tubulin polymerization, MT-binding, actin-binding, and actin polymerization assays. A subset of MAP2-P events significantly impaired these functions, with the two domains displaying different patterns of MAP2 regulation: proline-rich domain mutants T293E and T300E impaired MT assembly and actin-binding affinity but did not affect MT-binding, while C-terminal domain mutants S426E and S439D impaired all three functions. S443D also impaired MT assembly with minimal effects on MT- or actin-binding. Using heterologous cells, we also found that S426E but not T293E had a lower capability for process formation than the wild-type protein. These findings demonstrate the functional utility of MAP2-P in the proline-rich and C-terminal domains and point to distinct, domain-dependent regulations of MAP2 function, which can go on to affect cellular morphology.


Assuntos
Actinas , Fosfopeptídeos , Humanos , Fosforilação , Tubulina (Proteína) , Prolina , Proteínas Associadas aos Microtúbulos
2.
Cell Signal ; 98: 110416, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35872089

RESUMO

Rac1 and RhoA are among the most widely studied small GTPases. The classic dogma surrounding their biology has largely focused on their activity as an "on/off switch" of sorts. However, the advent of more sophisticated techniques, such as genetically-encoded FRET-based sensors, has afforded the ability to delineate the spatiotemporal regulation of Rac1 and RhoA. As a result, there has been a shift from this simplistic global view to one incorporating the precision of spatiotemporal modularity. This review summarizes emerging data surrounding the roles of Rac1 and RhoA as cytoskeletal regulators and examines how these new data have led to a revision of the traditional dogma which placed Rac1 and RhoA in antagonistic pathways. This more recent evidence suggests that rather than absolute activity levels, it is the tight spatiotemporal regulation of Rac1 and RhoA across multiple roles, from oppositional to complementary, that is necessary to execute coordinated cytoskeletal processes affecting cell structure, function, and migration. We focus on how Kalirin and Trio, as dual GEFs that target Rac1 and RhoA, are uniquely designed to provide the spatiotemporally-precise shifts in Rac/Rho balance which mediate changes in neuronal structure and function, particularly by way of cytoskeletal rearrangements. Finally, we review how alterations in Trio and/or Kalirin function are associated with cellular abnormalities and neuropsychiatric disease.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteína rhoA de Ligação ao GTP , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Mol Psychiatry ; 26(9): 5371-5388, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526823

RESUMO

Schizophrenia (Sz) is a highly polygenic disorder, with common, rare, and structural variants each contributing only a small fraction of overall disease risk. Thus, there is a need to identify downstream points of convergence that can be targeted with therapeutics. Reduction of microtubule-associated protein 2 (MAP2) immunoreactivity (MAP2-IR) is present in individuals with Sz, despite no change in MAP2 protein levels. MAP2 is phosphorylated downstream of multiple receptors and kinases identified as Sz risk genes, altering its immunoreactivity and function. Using an unbiased phosphoproteomics approach, we quantified 18 MAP2 phosphopeptides, 9 of which were significantly altered in Sz subjects. Network analysis grouped MAP2 phosphopeptides into three modules, each with a distinct relationship to dendritic spine loss, synaptic protein levels, and clinical function in Sz subjects. We then investigated the most hyperphosphorylated site in Sz, phosphoserine1782 (pS1782). Computational modeling predicted phosphorylation of S1782 reduces binding of MAP2 to microtubules, which was confirmed experimentally. We generated a transgenic mouse containing a phosphomimetic mutation at S1782 (S1782E) and found reductions in basilar dendritic length and complexity along with reduced spine density. Because only a limited number of MAP2 interacting proteins have been previously identified, we combined co-immunoprecipitation with mass spectrometry to characterize the MAP2 interactome in mouse brain. The MAP2 interactome was enriched for proteins involved in protein translation. These associations were shown to be functional as overexpression of wild type and phosphomimetic MAP2 reduced protein synthesis in vitro. Finally, we found that Sz subjects with low MAP2-IR had reductions in the levels of synaptic proteins relative to nonpsychiatric control (NPC) subjects and to Sz subjects with normal and MAP2-IR, and this same pattern was recapitulated in S1782E mice. These findings suggest a new conceptual framework for Sz-that a large proportion of individuals have a "MAP2opathy"-in which MAP function is altered by phosphorylation, leading to impairments of neuronal structure, synaptic protein synthesis, and function.


Assuntos
Esquizofrenia , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosforilação , Esquizofrenia/genética , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...