Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Circ ; 8(3): 117-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267438

RESUMO

Despite decades of research, stroke therapies are limited to recanalization therapies that can only be used on <10% of stroke patients; the vast majority of stroke patients cannot be treated by these methods. Even if recanalization is successful, the outcome is often poor due to subsequent reperfusion injury. A major damage mechanism operating in stroke is inflammatory injury due to excessive pro-inflammatory cascades. Many studies have shown that, after stroke, splenic inflammatory cells, including neutrophils, monocytes/macrophages, and lymphocytes, are released and infiltrate the brain, heightening brain inflammation, and exacerbating ischemia/reperfusion injury. Clinical studies have observed spleen contraction in acute stroke patients where functional outcome improved with the gradual recovery of spleen volume. These observations are supported by stroke animal studies that have used splenectomy- or radiation-induced inhibition of spleen function to show spleen volume decrease during the acute phase of middle cerebral artery occlusion, and transfer of splenocytes to stroke-injured brain areas. Thus, activation and release of splenic cells are upstream of excessive brain inflammation in stroke. The development of reversible means of regulating splenic activity offers a therapeutic target and potential clinical treatment for decreasing brain inflammation and improving stroke outcomes.

2.
Oncogene ; 40(46): 6430-6442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608266

RESUMO

The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.


Assuntos
Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima
3.
Mol Neurobiol ; 58(5): 2309-2321, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417227

RESUMO

To demonstrate the role of the rate-limiting and ATP-dependent gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK) in oxidative and lactic stress and the effect of phenothiazine on PCK after stroke, a total of 168 adult male Sprague Dawley rats (3 months old, 280-300 g) underwent 2-h intraluminal middle cerebral artery occlusion (MCAO) and reperfusion for 6, 24, 48 h, or 7 days. Phenothiazine (chlorpromazine and promethazine (C+P)) (8 mg/kg) and 3-mercaptopicolinic acid (3-MPA, a PCK inhibitor, 100 µM) were administered at reperfusion onset. The effects of phosphoenolpyruvate, 3-MPA, or PCK knockdown were studied in neuronal cultures subjected to oxygen/glucose deprivation. Reactive oxygen species, lactate, phosphoenolpyruvate (PEP; a gluconeogenic product), mRNA, and protein of total PCK, PCK-1, and PCK-2 increased after MCAO and oxygen-glucose deprivation (OGD). Oxaloacetate (a gluconeogenic substrate) decreased, while PEP and glucose were increased, suggesting reactive gluconeogenesis. These changes were attenuated by phenothiazine, 3-MPA, or PCK shRNA. PCK-1 and -2 existed primarily in neurons, while the effects of ischemic stroke on the PCK expression were seen predominately in astrocytes. Thus, phenothiazine reduced infarction and oxidative/lactic stress by inhibiting PCKs, leading to functional recovery.


Assuntos
Encéfalo/metabolismo , Gluconeogênese/fisiologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Masculino , Fenotiazinas/farmacologia , Ácidos Picolínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
4.
Phys Rev E ; 100(5-1): 052407, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31870014

RESUMO

Medical conditions due to acute cell injury, such as stroke and heart attack, are of tremendous impact and have attracted huge amounts of research effort. The biomedical research that seeks cures for these conditions has been dominated by a qualitative, inductive mind-set. Although the inductive approach has not been effective in developing medical treatments, it has amassed enough information to allow construction of quantitative, deductive models of acute cell injury. In this work we develop a modeling approach by extending an autonomous nonlinear dynamic theory of acute cell injury that offered new ways to conceptualize cell injury but possessed limitations that decrease its effectiveness. Here we study the global dynamics of the cell injury theory using a nonautonomous formulation. Different from the standard scenario in nonlinear dynamics that is determined by the steady state and fixed points of the model equations, in this nonautonomous model with a trivial fixed point, the system property is dominated by the transient states and the corresponding dynamic processes. The model gives rise to four qualitative types of dynamical patterns that can be mapped to the behavior of cells after clinical acute injuries. The nonautonomous theory predicts the existence of a latent stress response capacity (LSRC) possessed by injured cells. The LSRC provides a theoretical explanation of how therapies, such as hypothermia, can prevent cell death after lethal injuries. The nonautonomous theory of acute cell injury provides an improved quantitative framework for understanding cell death and recovery and lays a foundation for developing effective therapeutics for acute injury.


Assuntos
Células/patologia , Modelos Biológicos , Adaptação Fisiológica , Morte Celular , Dinâmica não Linear , Estresse Fisiológico
5.
Brain Sci ; 8(3)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495539

RESUMO

Neuroprotection seeks to halt cell death after brain ischemia and has been shown to be possible in laboratory studies. However, neuroprotection has not been successfully translated into clinical practice, despite voluminous research and controlled clinical trials. We suggested these failures may be due, at least in part, to the lack of a general theory of cell injury to guide research into specific injuries. The nonlinear dynamical theory of acute cell injury was introduced to ameliorate this situation. Here we present a revised nonautonomous nonlinear theory of acute cell injury and show how to interpret its solutions in terms of acute biomedical injuries. The theory solutions demonstrate the complexity of possible outcomes following an idealized acute injury and indicate that a "one size fits all" therapy is unlikely to be successful. This conclusion is offset by the fact that the theory can (1) determine if a cell has the possibility to survive given a specific acute injury, and (2) calculate the degree of therapy needed to cause survival. To appreciate these conclusions, it is necessary to idealize and abstract complex physical systems to identify the fundamental mechanism governing the injury dynamics. The path of abstraction and idealization in biomedical research opens the possibility for medical treatments that may achieve engineering levels of precision.

6.
Transl Stroke Res ; 9(3): 251-257, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29127592

RESUMO

In this mini-review we give an overview of the role of mRNA-binding proteins and their associated messenger ribonucleoprotein complexes (mRNPs) in several disease states, and bring this information to bear on the pathophysiology of brain ischemia. One conclusion reached is that mRNPs may play a causal role in proteotoxicity instead of being merely passive targets. Ischemia therapies targeting mRNPs have advantages over targeting single pathways, but the behavior of mRNPs needs to be considered in the design of therapies.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Isquemia Encefálica/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-28097803

RESUMO

There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.


Assuntos
Isquemia Encefálica/genética , Regulação da Expressão Gênica , Neurônios/patologia , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Isquemia Encefálica/metabolismo , Humanos , Neurônios/metabolismo
8.
J Cereb Blood Flow Metab ; 37(4): 1494-1507, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27381823

RESUMO

Prolonged translation arrest correlates with delayed neuronal death of hippocampal CA1 neurons following global cerebral ischemia and reperfusion. Many previous studies investigated ribosome molecular biology, but mRNA regulatory mechanisms after brain ischemia have been less studied. Here we investigated the embryonic lethal abnormal vision/Hu isoforms HuR, HuB, HuC, and HuD, as well as expression of mRNAs containing adenine and rich uridine elements following global ischemia in rat brain. Proteomics of embryonic lethal abnormal vision immunoprecipitations or polysomes isolated from rat hippocampal CA1 and CA3 from controls or following 10 min ischemia plus 8 h of reperfusion showed distinct sets of mRNA-binding proteins, suggesting differential mRNA regulation in each condition. Notably, HuB, HuC, and HuD were undetectable in NIC CA1. At 8 h reperfusion, polysome-associated mRNAs contained 46.1% of ischemia-upregulated mRNAs containing adenine and rich uridine elements in CA3, but only 18.7% in CA1. Since mRNAs containing adenine and rich uridine elements regulation are important to several cellular stress responses, our results suggest CA1 is disadvantaged compared to CA3 in coping with ischemic stress, and this is expected to be an important contributing factor to CA1 selective vulnerability. (Data are available via ProteomeXchange identifier PXD004078 and GEO Series accession number GSE82146).


Assuntos
Adenina/metabolismo , Isquemia Encefálica/metabolismo , Proteínas ELAV/metabolismo , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/metabolismo , Uridina/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Masculino , Análise Serial de Proteínas , Proteômica , Proteínas de Ligação a RNA/metabolismo , Ratos Long-Evans , Espectrometria de Massas em Tandem
9.
Int Sch Res Notices ; 2014: 859341, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27437490

RESUMO

Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems.

11.
Transl Stroke Res ; 4(6): 589-603, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24323414

RESUMO

Prolonged translation arrest in post-ischemic hippocampal CA1 pyramidal neurons precludes translation of induced stress genes and directly correlates with cell death. We evaluated the regulation of mRNAs containing adenine- and uridine-rich elements (ARE) by assessing HuR protein and hsp70 mRNA nuclear translocation, HuR polysome binding, and translation state analysis of CA1 and CA3 at 8 h of reperfusion after 10 min of global cerebral ischemia. There was no difference between CA1 and CA3 at 8 h of reperfusion in nuclear or cytoplasmic HuR protein or hsp70 mRNA, or HuR polysome association, suggesting that neither mechanism contributed to post-ischemic outcome. Translation state analysis revealed that 28 and 58 % of unique mRNAs significantly different between 8hR and NIC, in CA3 and CA1, respectively, were not polysome-bound. There was significantly greater diversity of polysome-bound mRNAs in reperfused CA3 compared to CA1, and in both regions, ARE-containing mRNAs accounted for 4-5 % of the total. These data indicate that posttranscriptional ARE-containing mRNA regulation occurs in reperfused neurons and contributes to post-ischemic outcome. Understanding the differential responses of vulnerable and resistant neurons to ischemia will contribute to the development of effective neuroprotective therapies.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/metabolismo , Adenina/metabolismo , Animais , Western Blotting , Proteínas ELAV/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Ratos , Ratos Long-Evans , Uridina/metabolismo
12.
Transl Stroke Res ; 4(6): 604-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24323415

RESUMO

Translation arrest occurs in neurons following focal cerebral ischemia and is irreversible in penumbral neurons destined to die. Following global cerebral ischemia, mRNA is sequestered away from 40S ribosomal subunits as mRNA granules, precluding translation. Here, we investigated mRNA granule formation using fluorescence in situ histochemistry out to 8 h permanent focal cerebral ischemia using middle cerebral artery occlusion in Long Evans rats with and without diabetes. Neuronal mRNA granules colocalized with PABP, HuR, and NeuN, but not 40S or 60S ribosomal subunits, or organelle markers. The volume of brain with mRNA granule-containing neurons decreased exponentially with ischemia duration, and was zero after 8 h permanent focal cerebral ischemia or any duration of ischemia in diabetic rats. These results show that neuronal mRNA granule response has a limited range of insult intensity over which it is expressed. Identifying the limits of effective neuronal stress response to ischemia will be important for developing effective stroke therapies.


Assuntos
Isquemia Encefálica/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Antígenos Nucleares/metabolismo , Isquemia Encefálica/complicações , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Proteínas ELAV/metabolismo , Hibridização in Situ Fluorescente , Infarto da Artéria Cerebral Média/complicações , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Ratos , Ratos Long-Evans , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Fatores de Tempo
13.
Brain Sci ; 3(2): 460-503, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24961411

RESUMO

Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of "master bifurcation diagrams" that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection.

14.
J Cereb Blood Flow Metab ; 32(6): 1000-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22395210

RESUMO

Multifactorial injuries, such as ischemia, trauma, etc., have proven stubbornly elusive to clinical therapeutics, in spite of the binary outcome of recovery or death. This may be due, in part, to the lack of formal approaches to cell injury. We present a minimal system of nonlinear ordinary differential equations describing a theory of cell injury dynamics. A mutual antagonism between injury-driven total damage and total induced stress responses gives rise to attractors representing recovery or death. Solving across a range of injury magnitudes defines an 'injury course' containing a well-defined tipping point between recovery and death. Via the model, therapeutics is the diverting of a system on a pro-death trajectory to a pro-survival trajectory on bistable phase planes. The model plausibly explains why laboratory-based therapies have tended to fail clinically. A survival outcome is easy to achieve when lethal injury is close to the tipping point, but becomes progressively difficult as injury magnitudes increase, and there is an upper limit to salvageable injuries. The model offers novel insights into cell injury that may assist in overcoming barriers that have prevented development of clinically effective therapies for multifactorial conditions, as exemplified by brain ischemia.


Assuntos
Isquemia Encefálica , Modelos Biológicos , Estresse Fisiológico , Animais , Sobrevivência Celular , Humanos , Dinâmica não Linear
15.
Comput Methods Programs Biomed ; 105(1): 81-94, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21477879

RESUMO

Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1h of reperfusion after 10min of normothermic global cerebral ischemia. At 1h reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion.


Assuntos
Isquemia Encefálica/metabolismo , Poli A/metabolismo , Reperfusão/métodos , Animais , Morte Celular , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Software , Coloração e Rotulagem
16.
Neurol Res ; 33(2): 145-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21499502

RESUMO

OBJECTIVES: Most work on ischemia-induced neuronal death has revolved around the relative contributions of necrosis and apoptosis, but this work has not accounted for the role of ischemia-induced stress responses. An expanded view recognizes a competition between ischemia-induced damage mechanisms and stress responses in the genesis of ischemia-induced neuronal death. An important marker of post-ischemic stress responses is inhibition of neuronal protein synthesis, a morphological correlate of which is the compartmentalization of mRNA away from ribosomes in the form of cytoplasmic mRNA granules. METHODS: Here we assessed the generality of this mRNA granule response following either 10 or 15 minutes global brain ischemia and 1 hour reperfusion, 4 hours focal cerebral ischemia alone, and endothelin 1 intraventricular injection. RESULTS: Both global and focal ischemia led to prominent neuronal cytoplasmic mRNA granule formation in layer II cortical neurons. In addition, we report here new post-ischemic cellular phenotypes characterized by the loss of nuclear polyadenylated mRNA staining in cortical neurons following endothelin 1 treatment and 15 minutes global ischemia. Both mRNA granulation and loss of nuclear mRNAs occurred in non-shrunken post-ischemic neurons. DISCUSSION: Where cytoplasmic mRNA granules generally appear to mark a protective response in surviving cells, loss of nuclear mRNAs may mark cellular damage leading to cell atrophy/death. Hence, staining for total mRNA may reveal facets of the competition between stress responses and damage mechanisms at early stages in post-ischemic neurons.


Assuntos
Isquemia Encefálica/patologia , Endotelina-1/administração & dosagem , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fenótipo , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/patologia , Estresse Fisiológico , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Endotelina-1/metabolismo , Masculino , Degeneração Neural/fisiopatologia , RNA Mensageiro/genética , Ratos , Ratos Long-Evans , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Estresse Fisiológico/genética
18.
J Exp Stroke Transl Med ; 3(1): 72-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21258657

RESUMO

The general failure of neuroprotectants in clinical trials of ischemic stroke points to the possibility of a fundamental blind spot in the current conception of ischemic brain injury, the "ischemic cascade". This is the second in a series of four papers whose purpose is to work towards a revision of the concept of brain ischemia by applying network concepts to develop a bistable model of brain ischemia. We here build the bistable network model of brain ischemia. The central concept is that of a post-ischemic state space. Ischemia, as a quantitative perturbation, is envisioned to push the brain through a series of four phenotypes as a function of the amount of ischemia: the homeostatic, preconditioned, delayed neuronal death and necrotic phenotypes. The phenotypes are meta-stable attractors in the landscape of the post-ischemic state space. The sequence of the phenotypes derives from the mutual antagonism between damage mechanisms and stress responses, each conceived as aggregate ensemble variables. The competition between damage mechanisms and stress responses is posited to have the form of a bistability. Application of bistability to brain ischemia is grounded in the incontrovertible fact that post-ischemic neurons face the mutually exclusive decision to either live or die.

19.
J Exp Stroke Transl Med ; 3(1): 104-114, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21528101

RESUMO

The general failure of neuroprotectants in clinical trials of ischemic stroke points to the possibility of a fundamental blind spot in the current conception of ischemic brain injury, the "ischemic cascade". This is the fourth in a series of four papers whose purpose is to work towards a revision of the concept of brain ischemia by applying network concepts to develop a bistable model of brain ischemia. Here we consider additional issues to round out and close out this initial presentation of the bistable network view of brain ischemia. Initial considerations of the network architecture underlying the post-ischemic state space are discussed. Network and differential equation models of brain ischemia are compared. We offer a first look at applying the bistable model to focal cerebral ischemia. The limitations of the present formulation of the bistable model are discussed. This work concludes with a series of questions by which to direct future efforts.

20.
J Exp Stroke Transl Med ; 3(1): 59-71, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21528102

RESUMO

The general failure of neuroprotectants in clinical trials of ischemic stroke points to the possibility of a fundamental blind spot in the current conception of ischemic brain injury, the "ischemic cascade". This is the first in a series of four papers whose purpose is to work towards a revision of the concept of brain ischemia by applying network concepts to develop a bistable model of brain ischemia. This first paper sets the stage for developing the bistable model of brain ischemia. Necessary background in network theory is introduced using examples from developmental biology which, perhaps surprisingly, can be adapted to brain ischemia with only minor modification. Then, to move towards a network model, we extract two core generalizations about brain ischemia from the mass of empirical data. First, we conclude that all changes induced in the brain by ischemia can be classified as either damage mechanisms that contribute to cell death, or stress responses that contribute to cell survival. Second, we move towards formalizing the idea of the "amount of ischemia", I, as a continuous, nonnegative, monotonically increasing quantity. These two generalizations are necessary precursors to reformulating brain ischemia as a bistable network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...