Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Biol ; 10(3): 129-141, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684999

RESUMO

Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.

2.
Clin Cancer Res ; 21(20): 4597-606, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26138066

RESUMO

PURPOSE: In other cancer types, HPV infection has been reported to coincide with overexpression of HER2 (ERBB2) and HER3 (ERBB3); however, the association between HER2 or HER3 expression and dimer formation in HNSCC has not been reported. Overexpression of HER2 and HER3 may contribute to resistance to EGFR inhibitors, including cetuximab, although the contribution of HPV in modulating cetuximab response remains unknown. Determination of heterodimerization of HER receptors is challenging and has not been reported in HNSCC. The present study aimed to determine the expression of HER proteins in HPV(+) versus HPV(-) HNSCC tumors using a proximity-based protein expression assay (VeraTag), and to determine the efficacy of HER-targeting agents in HPV(+) and HPV(-) HNSCC cell lines. EXPERIMENTAL DESIGN: Expression of total HER1, HER2, and HER3, p95HER2, p-HER3, HER1:HER1 homodimers, HER2:HER3 heterodimers, and the HER3-PI3K complex in 88 HNSCC was determined using VeraTag, including 33 baseline tumors from individuals treated in a trial including cetuximab. Inhibition of cell growth and protein activation with cetuximab and afatinib was compared in HPV(+) and HPV(-) cetuximab-resistant cell lines. RESULTS: Expression of total HER2, total HER3, HER2:HER3 heterodimers, and the HER3:PI3K complex were significantly elevated in HPV(+) HNSCC. Total EGFR was significantly increased in HPV(-) HNSCC where VeraTag assay results correlated with IHC. Afatinib significantly inhibited cell growth when compared with cetuximab in the HPV(+) and HPV(-) cetuximab-resistant HNSCC cell lines. CONCLUSIONS: These findings suggest that agents targeting multiple HER proteins may be effective in the setting of HPV(+) HNSCC and/or cetuximab resistance.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Papillomaviridae/patogenicidade , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Multimerização Proteica/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adulto Jovem
3.
Neoplasia ; 17(3): 256-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25810010

RESUMO

Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 3 has been implicated in cell proliferation and survival of many cancers including head and neck squamous cell carcinoma (HNSCC). AZD1480, an orally active pharmacologic inhibitor of JAK1/JAK2, has been tested in several cancer models. In the present study, the in vitro and in vivo effects of AZD1480 were evaluated in HNSCC preclinical models to test the potential use of JAK kinase inhibition for HNSCC therapy. AZD1480 treatment decreased HNSCC proliferation in HNSCC cell lines with half maximal effective concentration (EC50) values ranging from 0.9 to 4 µM in conjunction with reduction of pSTAT3(Tyr705) expression. In vivo antitumor efficacy of AZD1480 was demonstrated in patient-derived xenograft (PDX) models derived from two independent HNSCC tumors. Oral administration of AZD1480 reduced tumor growth in conjunction with decreased pSTAT3(Tyr705) expression that was observed in both PDX models. These findings suggest that the JAK1/2 inhibitors abrogate STAT3 signaling and may be effective in HNSCC treatment approaches.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Janus Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Dosagem de Genes , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Camundongos , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...