Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 35(6): 503-519, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30825052

RESUMO

In the last 15 years, pyridazinone derivatives have acquired extensive attention due to their widespread biological activities and pharmacological applications. Pyridazinones are well known for their anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and cardiovascular activities, among others. In this study, we evaluated the anti-cancer activity of a new pyridazinone derivative and propose it as a potential anti-neoplastic agent in acute promyelocytic leukemia cells. Pyr-1 cytotoxicity was assessed on several human cancer and two non-cancerous cell lines by the DNS assay. Pyr-1 demonstrated potent cytotoxicity against 22 human cancer cell lines, exhibiting the most favorable selective cytotoxicity on leukemia (CEM and HL-60), breast (MDA-MB-231 and MDA-MB-468), and lung (A-549) cancer cell lines, when compared with non-cancerous breast epithelial MCF-10A cells. Analyses of apoptosis/necrosis pathways, reactive oxygen species (ROS) production, mitochondria health, caspase-3 activation, and cell cycle profile were performed via flow cytometry. Both hmox-1 RNA and protein expression levels were evaluated by quantitative real-time PCR and Western blotting assays, respectively. Pyr-1 induced apoptosis in acute promyelocytic leukemia cells as confirmed by phosphatidylserine externalization, mitochondrial depolarization, caspase-3 activation, DNA fragmentation, and disrupted cell cycle progression. Additionally, it was determined that Pyr-1 generates oxidative and proteotoxic stress by provoking the accumulation of ROS, resulting in the overexpression of the stress-related hmox-1 mRNA transcripts and protein and a marked increase in poly-ubiquitinated proteins. Our data demonstrate that Pyr-1 induces cell death via the intrinsic apoptosis pathway by accumulating ROS and by impairing proteasome activity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Piridazinas/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Fragmentação do DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Ubiquitinadas , Proteína X Associada a bcl-2/metabolismo
2.
PLoS One ; 13(11): e0206467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395606

RESUMO

The potent antimalarial drug pyronaridine (PND) was tested for its potential as an anticancer drug. After exposing cancerous (17) and non-cancerous (2) cells to PND for 72 hr, PND was found to exhibit consistent and potent cytotoxic activity at low micromolar (µM) concentrations that ranged from 1.6 µM to 9.4 µM. Moreover, PND exerted a significant selective cytotoxicity index (SCI) on five out of seven breast cancer cell lines tested, with favorable values of 2.5 to 4.4, as compared with the non-cancerous breast MCF-10A cell line. By using the same comparison, PND exhibited a significant SCI on three out of four leukemia/lymphoma cell lines with promising values of 3.3 to 3.5. One breast cancer and one leukemia cell line were tested further in order to determine the likely mode of action of PND. PND was found to consistently elicit phosphatidylserine externalization, mitochondrial depolarization, and DNA fragmentation, in both the triple negative MDA-MB-231 breast cancer and HL-60 leukemia cell lines. In addition, PND treatment altered cell cycle progression in both cancer cells. Subsequent DNA mobility-shift assays, UV-Visible spectroscopic titrations, and circular dichroism (CD) experiments revealed that PND intercalates with DNA. The findings presented in this study indicates that PND induces apoptosis and interfered with cell cycle progression of cancer cell lines and these results indicate that this drug has the potential as a repurposed drug for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Leucemia/patologia , Linfoma/patologia , Naftiridinas/farmacologia , Transporte Biológico/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilserinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...