Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33866109

RESUMO

Quantification of proteins in biofluids has largely involved either traditional ligand binding assays or "bottom-up" mass spectrometry. Recently, top-down mass spectrometry using reversed-phase liquid chromatography (RPLC) paired with high-resolution mass spectrometry (HRMS) has emerged as a promising technique, due to the potential of better identification of post-translational modifications (PTMs), lack of downstream interferences, and less time-consuming sample preparation and analysis times. However, it can be difficult with this approach to robustly obtain high-fidelity MS data, especially when pushing for low limits of detection. To address these issues, we developed a chromatographic device with an optimized form factor and stationary phase to improve protein recovery, while reducing run times. We have observed that by using this device, it is possible to achieve attomole quantitation of mAbs without the addition of carrier proteins and with over three-fold higher throughput than columns employed in previous studies. Moreover, we have devised a novel affinity capture method, based on repurposing a unique aptamer ligand that can give 93% recovery of mAb using only a 2 h incubation. When hyphenated together, these two technologies greatly improve the ability to analyze proteins in complex matrices.

2.
J Sep Sci ; 44(5): 1005-1014, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33354922

RESUMO

We have characterized Atlantis ethylene-bridged hybrid C18 anion-exchange, a mixed-mode reversed-phase/weak anion-exchange stationary phase designed to give greater retention for anions (e.g., ionized acids) compared to conventional reversed-phase materials. The retention and selectivity of this stationary phase were compared to that of three benchmark materials, using a mixture of six polar compounds that includes an acid, two bases, and three neutrals. The compatibility of the ethylene-bridged hybrid C18 anion-exchange material with 100% aqueous mobile phases was also evaluated. We investigated the batch-to-batch reproducibility of the ethylene-bridged hybrid C18 anion-exchange stationary phase for 27 batches across three different particle sizes (1.7, 2.5, and 5 µm) and found it to be comparable to that of one of the most reproducible C18 stationary phases. We also characterized the acid and base stability of the ethylene-bridged hybrid C18 anion-exchange stationary phase and the results show it to be usable over a wide pH range, from 2 to 10. The extended upper pH limit relative to silica-based reversed-phase/weak anion-exchange materials is enabled by the use of ethylene-bridged hybrid organic/inorganic particles. The improved base stability allows Atlantis ethylene-bridged hybrid C18 anion-exchange to be used with a wider range of mobile phase pH values, opening up a greater range of selectivity options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...