Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(3): 707-715, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481696

RESUMO

The lipid nanoparticle (LNP) mRNA vaccine was first tested through clinic but suffered from relatively low RNA payloads and poor temperature stability. Our lab patented a protamine-coated particle approach for temperature-stabilizing DNA vaccines, translating this successfully to the clinic. In subsequent work, we have characterized RNA interaction and delivery by zinc oxide nanoparticles, filing a patent most recently entitled RNA-stabilizing nanoparticles, similarly utilizing protamine-coated zinc oxide nanoparticles for RNA. Here, we present this data for the first time. Briefly, ZnO, ZnO-protamine, and ZnO-protamine-RNA were characterized by size and zeta potential analyses and the RNA-loaded nanoparticles were visualized by transmission electron microscopy. UV spectroscopic analysis demonstrated up to 95-98% loading efficiency with protamine and approximately 75% loading efficiency with LL37, another cationic antiviral peptide. Elution of the RNA isolated from the particles afforded a calculation in three independent trials where RNA payloads ranged from 18 to 45 µg of RNA per 0.5 mg of coated particles. Circular dichroism (CD) analysis indicated that binding of RNA to ZnO NPs stabilized, enhancing the pattern with a clear dependence on the RNA:ZnO stoichiometry. Enhanced temperature stability was shown by differential scanning calorimetry (DSC), gel electrophoresis, and in vitro mRNA expression analysis. Using poly I:C RNA with a well-defined melting point (64.3 ± 0.32 °C), formation of the ZnO:RNA complex increased the RNA melting point (70.9 ± 0.62 °C). After refrigerated or room-temperature storage or incubation at 30, 40, or 50 °C, RNA comigration with the control RNA was recovered from all samples, exposed to either 14 or 100 nm ZnO, and coated with protamine. Furthermore, the ZnO-protamine-mRNA samples retained significantly higher expression activity when incubated at these elevated temperatures. Finally, the ZnO-protamine-mRNA was functionally active for in vitro translation, in cell extracts, and in cells for expression of GFP, luciferase, and COVID spike protein. These data support further preclinical development of ZnO-protamine-mRNA.

2.
Nanoscale Adv ; 6(1): 188-196, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125590

RESUMO

This study demonstrates the copper nanocomposite-induced enzymatic inhibition of human angiotensin I-converting enzyme-2 (hACE-2) by complex stabilization through the formation of the enzyme nanocomposite. The immediate application of this work is related to ACE-2 as a mechanism of SARS-CoV-2 entry into cells. Moreover, ACE-2 enzyme regulation is a potential therapeutic strategy in hypertension and cardiovascular disease, diabetes, lung injury, and fibrotic disorders. Thus, inhibition of ACE-2 with nanocomposite therapy, may have pharmacologic application with regard to infectious and non-infectious diseases. Synthesized copper nanocomposites described here alone with a commercially available compound, were tested for their potential to inhibit hACE-2 activities. Following wet chemical synthesis, Cu/CuO nanoparticles and graphene-copper (GO-Cu) complexes were synthesized and characterized for their chemical integrity. Cu/CuO formed well-dispersed clusters of 390 ± 100 nm, that when complexed with the hACE-2 enzyme exhibited larger clusters of 506 ± 56 nm. The formation of the Cu/CuO and hACE-2 enzyme complex was monitored by analyzing the zeta potential, which reflected the surface charge distribution of the complex. A negatively charged Cu/CuO nanocomposite nearly becomes neutral when complexed with hACE-2 further assuring the complex formation. Formation of this complex and its inactivation of hACE-2 was evaluated using a standardized protocal for enzymatic activity. Similarly, carboxylate-functionalized graphene was complexed with copper, and its inhibitory effect was studied. Each step in the GO-Cu composite formation was monitored by characterizing its surface electrical properties, resulting in a decrease in its zeta potential and conductivity when complexed with copper. The interaction of the nanocomposites with hACE-2 was confirmed by 2D-FDS and gel electrophoresis analysis. GO-Cu was a rapid and efficacious inhibitor compared to Cu-CuO, especially at lower concentrations (2 µg ml-1). Considering the environmental friendliness of copper and graphene and their use in industries as surface coating materials, we anticipate that use of these composites once proven effective, may have future antimicrobial application. Utility of nanocomposites as antimicrobials, either as a surface antimicrobial or as an in vivo therapeutic, could be invisioned for use against current unknown and/or emergent pathogens.

3.
Bioengineering (Basel) ; 10(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237582

RESUMO

Conserved omicron RNA (COR) is a 40 base long 99.9% conserved sequence in SARS-CoV-2 Omicron variant, predicted to form a stable stem loop, the targeted cleavage of which can be an ideal next step in controlling the spread of variants. The Cas9 enzyme has been traditionally utilized for gene editing and DNA cleavage. Previously Cas9 has been shown to be capable of RNA editing under certain conditions. Here we investigated the ability of Cas9 to bind to single-stranded conserved omicron RNA (COR) and examined the effect of copper nanoparticles (Cu NPs) and/or polyinosinic-polycytidilic acid (poly I:C) on the RNA cleavage ability of Cas9. The interaction of the Cas9 enzyme and COR with Cu NPs was shown by dynamic light scattering (DLS) and zeta potential measurements and was confirmed by two-dimensional fluorescence difference spectroscopy (2-D FDS). The interaction with and enhanced cleavage of COR by Cas9 in the presence of Cu NPs and poly I:C was shown by agarose gel electrophoresis. These data suggest that Cas9-mediated RNA cleavage may be potentiated at the nanoscale level in the presence of nanoparticles and a secondary RNA component. Further explorations in vitro and in vivo may contribute to the development of a better cellular delivery platform for Cas9.

4.
ACS Pharmacol Transl Sci ; 6(2): 220-228, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798473

RESUMO

Nanomaterials have now found applications across all segments of society including but not limited to energy, environment, defense, agriculture, purification, food medicine, diagnostics, and others. The pandemic and the vulnerability of humankind to emerging viruses and other infectious diseases has renewed interest in nanoparticles as a potential new class of antivirals. In fact, a growing body of evidence in the literature suggests nanoparticles may have activity against multiple viruses including HIV, HNV, SARS-CoV-2, HBV, HCV, HSV, RSV, and others. The most described antiviral nanoparticles include copper, alloys, and oxides including zinc oxide (ZnO), titanium oxide, iron oxide, and their composites, nitrides, and other ceramic nanoparticles, as well as gold and silver nanoparticles, and sulfated and nonsulfated polysaccharides and other sulfated polymers including galactan, cellulose, polyethylenimine, chitosan/chitin, and others. Nanoparticles, synthesized via the biological or green method, also have great importance and are under major consideration these days, as their method of synthesis is easy, reliable, cost-effective, efficient, and eco-friendly, and is done using easily available sources such as bacteria, actinomycetes, yeast, fungi, algae, herbs, and plants, in comparison to chemically mediated synthesis. Chemical synthesis is highly expensive and involves toxic solvents, high pressure, energy, and high temperature conversion. Examples of biologically synthesized NPs include iron oxide, Cu and CuO NPs, and platinum and palladium NPs. In contrast to traditional medications, nanomedications have multiple advantages: their small size, increased surface to volume ratio, improved pharmacokinetics, improved biodistribution, and targeted delivery. In terms of antiviral activity, nanoscale interactions represent a unique mode of action. As reviewed here their biomedical application as an antiviral has shown four major mechanisms: (1) direct viral interaction prohibiting the virus from infecting the cell, (2) interaction to receptor or cell surface preventing the virus from entering the host cells, (3) preventing the replication of the virus, or (4) other processing mechanisms which inhibit the spread of virus. Here these pharmacologic mechanisms are reviewed and the challenges for technology translation are discussed in more detail.

5.
ACS Pharmacol Transl Sci ; 5(7): 449-457, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35821747

RESUMO

Recent interest in nanomedicine has skyrocketed because of mRNA vaccine lipid nanoparticles (LNPs) against COVID-19. Ironically, despite this success, the innovative nexus between nanotechnology and biochemistry, and the impact of nanoparticles on enzyme biochemical activity is poorly understood. The studies of this group on zinc nanoparticle (ZNP) compositions suggest that nanorod morphologies are preferred and that ZNP doped with manganese or iron can increase activity against model enzymes such as luciferase, DNA polymerase, and ß-galactosidase (ß-Gal), with the latter previously being associated with antimicrobial activity. SARS-CoV-2 encodes several of these types of oxido-reductase, polymerase, or hydrolase types of enzymes, and while metamaterials or nanoparticle composites have become important in many fields, their application against SARS-CoV-2 has only recently been considered. Recently, this group discovered the antiviral activity of manganese-doped zinc sulfide (MnZnS), and here the interactions of this nanoparticle composite with ß-Gal, angiotensin converting enzyme (ACE), and human ACE2 (hACE2), the SARS-CoV-2 receptor, are demonstrated. Low UV, circular dichroism, and zeta potential results confirm their enzyme interaction and inhibition by fluorometric area under the curve (AUC) measurements. The IC50 of enzyme activity varied depending on the manganese percentage and surface ranging from 20 to 50 µg/mL. MnZnS NPs give a 1-2 log order inhibition of SARS-CoV-2; however, surface-capping with cysteine does not improve activity. These data suggest that Mn substituted ZNP interactions to hACE2 and potentially other enzymes may underlie its antiviral activity, opening up a new area of pharmacology ready for preclinical translation.

6.
J Med Chem ; 65(10): 6975-7015, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35533054

RESUMO

In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.


Assuntos
Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19 , Humanos , RNA , RNA Mensageiro/metabolismo , SARS-CoV-2
7.
Nanoscale Res Lett ; 16(1): 169, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837559

RESUMO

FePO4 NPs are of special interest in food fortification and biomedical imaging because of their biocompatibility, high bioavailability, magnetic property, and superior sensory performance that do not cause adverse organoleptic effects. These characteristics are desirable in drug delivery as well. Here, we explored the FePO4 nanoparticles as a delivery vehicle for the anticancer drug, doxorubicin, with an optimum drug loading of 26.81% ± 1.0%. This loading further enforces the formation of Fe3+ doxorubicin complex resulting in the formation of FePO4-DOX nanoparticles. FePO4-DOX nanoparticles showed a good size homogeneity and concentration-dependent biocompatibility, with over 70% biocompatibility up to 80 µg/mL concentration. Importantly, cytotoxicity analysis showed that Fe3+ complexation with DOX in FePO4-DOX NPs enhanced the cytotoxicity by around 10 times than free DOX and improved the selectivity toward cancer cells. Furthermore, FePO4 NPs temperature-stabilize RNA and support mRNA translation activity showing promises for RNA stabilizing agents. The results show the biocompatibility of iron-based inorganic nanoparticles, their drug and RNA loading, stabilization, and delivery activity with potential ramifications for food fortification and drug/RNA delivery.

8.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34681236

RESUMO

The emergence of SARS-CoV-2 variants is cause for concern, because these may become resistant to current vaccines and antiviral drugs in development. Current drugs target viral proteins, resulting in a critical need for RNA-targeted nanomedicines. To address this, a comparative analysis of SARS-CoV-2 variants was performed. Several highly conserved sites were identified, of which the most noteworthy is a partial homopurine palindrome site with >99% conservation within the coding region. This sequence was compared among recently emerged, highly infectious SARS-CoV-2 variants. Conservation of the site was maintained among these emerging variants, further contributing to its potential as a regulatory target site for SARS-CoV-2. RNAfold was used to predict the structures of the highly conserved sites, with some resulting structures being common among coronaviridae. An RNA-level regulatory map of the conserved regions of SARS-CoV-2 was produced based on the predicted structures, with each representing potential target sites for antisense oligonucleotides, triplex-forming oligomers, and aptamers. Additionally, homopurine/homopyrimidine sequences within the viral genome were identified. These sequences also demonstrate appropriate target sites for antisense oligonucleotides and triplex-forming oligonucleotides. An experimental strategy to investigate these is summarized along with potential nanoparticle types for delivery, and the advantages and disadvantages of each are discussed.

9.
Cancers (Basel) ; 13(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503227

RESUMO

This study presents a new way to investigate comprehensive trends in cancer nanotechnology research in different countries, institutions, and journals providing critical insights to prevention, diagnosis, and therapy. This paper applied the qualitative method of bibliometric analysis on cancer nanotechnology using the PubMed database during the years 2000-2021. Inspired by hybrid medical models and content-based and bibliometric features for machine learning models, our results show cancer nanotechnology studies have expanded exponentially since 2010. The highest production of articles in cancer nanotechnology is mainly from US institutions, with several countries, notably the USA, China, the UK, India, and Iran as concentrated focal points as centers of cancer nanotechnology research, especially in the last five years. The analysis shows the greatest overlap between nanotechnology and DNA, RNA, iron oxide or mesoporous silica, breast cancer, and cancer diagnosis and cancer treatment. Moreover, more than 50% of the information related to the keywords, authors, institutions, journals, and countries are considerably investigated in the form of publications from the top 100 journals. This study has the potential to provide past and current lines of research that can unmask comprehensive trends in cancer nanotechnology, key research topics, or the most productive countries and authors in the field.

10.
Nanomedicine (Lond) ; 16(21): 1857-1872, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282923

RESUMO

The aim of this study was to investigate the distribution, tolerance, and anticancer and antiviral activity of Zn-based physiometacomposites (PMCs). Manganese, iron, nickel and cobalt-doped ZnO, ZnS or ZnSe were synthesized. Cell uptake, distribution into 3D culture and mice, and biochemical and chemotherapeutic activity were studied by fluorescence/bioluminescence, confocal microscopy, flow cytometry, viability, antitumor and virus titer assays. Luminescence and inductively coupled plasma mass spectrometry analysis showed that nanoparticle distribution was liver >spleen >kidney >lung >brain, without tissue or blood pathology. Photophysical characterization as ex vivo tissue probes and LL37 peptide, antisense oligomer or aptamer delivery targeting RAS/Ras binding domain (RBD) was investigated. Treatment at 25 µg/ml for 48 h showed ≥98-99% cell viability, 3D organoid uptake, 3-log inhibition of ß-Galactosidase and porcine reproductive respiratory virus infection. Data support the preclinical development of PMCs for imaging and delivery targeting cancer and infectious disease.


Assuntos
Antivirais , Nanopartículas , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Luminescência , Camundongos , Suínos , Zinco/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-33749154

RESUMO

The world we live in today is overpopulated with an unprecedented number of people competing for fewer and fewer precious resources. The struggle to efficiently steward and manage these resources is a global problem in need of concrete and urgent solutions. Nanomaterials have driven innovation in diverse industrial sectors including military, aviation, electronic, and medical among others. Nanoscale materials possess unique surfaces and exquisite opto-electronic properties that make them uniquely suited to environmental, biological, and ecological defense applications. A tremendous upsurge of research activity in these areas is evident from the exponential increase in publications worldwide. Here we review recent applications of nanomaterials toward soil health and management, abiotic and biotic stress management, plant defense, delivery of the RNA Interference (RNAi), plant growth, manufacture of agro-products, and ecological investigations related to farming. For example, nanomaterial constructs have been used to counter environmental stresses and in plant defense and disease diagnosis. Nanosensor chemistries have been developed to monitor water quality and measure specific pollutant levels. Specific nanomaterials such as silver, iron oxide, and zinc oxide proffer protection to plants from pathogens. This review describes progress in nanomaterial-based agricultural and ecological defense and seeks to identify factors that would enable their wider commercialization and deployment. This article is categorized under: Diagnostic Tools > Biosensing Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > Diagnostic Nanodevices.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Nanoestruturas , Nanoestruturas/toxicidade , Interferência de RNA
13.
PLoS One ; 15(12): e0243802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326476

RESUMO

Zinc oxide (ZnO) NP is considered as a nanoscale chemotherapeutic. Thus, the drug delivery of this inorganic NP is of considerable importance. Ras mutations are common in cancer and the activation of this signaling pathway is a hallmark in carcinoma, melanoma and many other aggressive malignancies. Thus, here we examined the binding and delivery of Ras binding domain (RBD), a model cancer-relevant protein and effector of Ras by ZnO NP. Shifts in zeta potential in water, PBS, DMEM and DMEM supplemented with FBS supported NP interaction to RBD. Fluorescence quenching of the NP was concentration-dependent for RBD, Stern-Volmer analysis of this data was used to estimate binding strength which was significant for ZnO-RBD (Kd < 10-5). ZnO NP interaction to RBD was further confirmed by pull-down assay demonstrated by SDS-PAGE analysis. The ability of ZnO NP to inhibit 3-D tumor spheroid was demonstrated in HeLa cell spheroids-the ZnO NP breaking apart these structures revealing a significant (>50%) zone of killing as shown by light and fluorescence microscopy after intra-vital staining. ZnO 100 nm was superior to ZnO 14 nm in terms of anticancer activity. When bound to ZnO NP, the anticancer activity of RBD was enhanced. These data indicate the potential diagnostic application or therapeutic activity of RBD-NP complexes in vivo which demands further investigation.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Nanopartículas , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia , Proteínas ras/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Ligação Proteica , Óxido de Zinco/química , Proteínas ras/química
14.
J Vet Diagn Invest ; 32(2): 312-316, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32081093

RESUMO

In February 2015, we conducted a field study of causes of mortality of northern elephant seal (Mirounga angustirostris) pups on San Miguel Island, California. Autopsies were performed on 18 freshly dead pups. Ages of pups ranged from stillborn to 6-8 wk. Gross and histologic lesions included trauma (9 of 18 pups), multifocal necrotizing myopathy (8 of 18), starvation with emaciation (7 of 18), congenital anomalies (3 of 18), bacterial infections (3 of 18), and perinatal mortality (stillbirths and neonates; 2 of 18). Trauma and emaciation or starvation were the most significant contributors to death. Bacterial infections included hemolytic Escherichia coli isolated from the lungs of 2 pups with pneumonia. Additionally, non-hemolytic Streptococcus sp. and hemolytic E. coli were isolated from the liver of an emaciated pup that had mild multifocal suppurative hepatitis. Other lesions, including a previously described necrotizing myopathy, congenital anomalies, and bacterial infections, were detected concurrently in cases with starvation and/or emaciation or trauma.


Assuntos
Infecções Bacterianas/veterinária , Doenças Musculares/veterinária , Focas Verdadeiras , Inanição/veterinária , Animais , Infecções Bacterianas/mortalidade , California/epidemiologia , Feminino , Humanos , Masculino , Doenças Musculares/mortalidade , Focas Verdadeiras/lesões , Inanição/mortalidade
15.
ACS Appl Bio Mater ; 3(1): 175-179, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019433

RESUMO

Aberrant splicing and protein interaction of Ras binding domain (RBD) are associated with melanoma drug resistance. Here, cobalt or nickel doped zinc oxide (ZnO) physiometacomposite (PMC) materials bind to RNA and peptide shown by Ninhydrin staining, UV-vis, Fourier transform infrared, and circular dichroism spectroscopy. PMCs deliver splice switching oligomer (SSO) into melanoma cells or 3-D tumor spheroids shown by flow cytometry, fluorescence microscopy, and bioluminescence. Stability in serum, liver, or tumor homogenate up to 48 h and B16F10 melanoma inhibition ≥98-99% is shown. These data suggest preclinical potential of PMC for delivery of SSO, RBD, or other nucleic acid therapeutic and anticancer peptides.

16.
Nanomaterials (Basel) ; 9(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771091

RESUMO

Currently, there is a great interest in nanoparticle-based vaccine delivery. Recent studies suggest that nanoparticles when introduced into the biological milieu are not simply passive carriers but may also contribute immunological activity themselves or of their own accord. For example there is considerable interest in the biomedical applications of one of the physiologically-based inorganic metal oxide nanoparticle, zinc oxide (ZnO). Indeed zinc oxide (ZnO) NP are now recognized as a nanoscale chemotherapeutic or anticancer nanoparticle (ANP) and several recent reports suggest ZnO NP and/or its complexes with drug and RNA induce a potent antitumor response in immuno-competent mouse models. A variety of cell culture studies have shown that ZnO NP can induce cytokines such as IFN-γ, TNF-α, IL-2, and IL-12 which are known to regulate the tumor microenvironment. Much less work has been done on magnesium oxide (MgO), cobalt oxide (Co3O4), or nickel oxide (NiO); however, despite the fact that these physiologically-based metal oxide NP are reported to functionally load and assemble RNA and protein onto their surface and may thus also be of potential interest as nanovaccine platform. Here we initially compared in vitro immunogenicity of ZnO and Co3O4 NP and their effects on cancer-associated or tolerogenic cytokines. Based on these data we moved ZnO NP forward to testing in the ex vivo splenocyte assay relative to MgO and NiO NP and these data showed significant difference for flow cytometry sorted population for ZnO-NP, relative to NiO and MgO. These data suggesting both molecular and cellular immunogenic activity, a double-stranded anticancer RNA (ACR), polyinosinic:poly cytidylic acid (poly I:C) known to bind ZnO NP; when ZnO-poly I:C was injected into B16F10-BALB/C tumor significantly induced, IL-2 and IL-12 as shown by Cohen's d test. LL37 is an anticancer peptide (ACP) currently in clinical trials as an intratumoral immuno-therapeutic agent against metastatic melanoma. LL37 is known to bind poly I:C where it is thought to compete for receptor binding on the surface of some immune cells, metastatic melanoma and lung cells. Molecular dynamic simulations revealed association of LL37 onto ZnO NP confirmed by gel shift assay. Thus using the well-characterized model human lung cancer model cell line (BEAS-2B), poly I:C RNA, LL37 peptide, or LL37-poly I:C complexes were loaded onto ZnO NP and delivered to BEAS-2B lung cells, and the effect on the main cancer regulating cytokine, IL-6 determined by ELISA. Surprisingly ZnO-LL37, but not ZnO-poly I:C or the more novel tricomplex (ZnO-LL37-poly I:C) significantly suppressed IL-6 by >98-99%. These data support the further evaluation of physiological metal oxide compositions, so-called physiometacomposite (PMC) materials and their formulation with anticancer peptide (ACP) and/or anticancer RNA (ACR) as a potential new class of immuno-therapeutic against melanoma and potentially lung carcinoma or other cancers.

17.
Biochem Biophys Res Commun ; 517(1): 43-48, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31307783

RESUMO

Physiological metals such as zinc, magnesium, and nickel facilitate nucleic acid and protein interactions and stability. In the nanoscale, the impact these have on nucleic acid structure-function is very poorly understood and was investigated here. Nanoparticles' (NP) RNA precipitation efficiency was in the order; NiO > MgO > ZnO > CaO > CaCO3>Cu. Gel mobility shift was observed for MgO and especially ZnO NP. Loss of staining intensity was shown for Cu suggesting this NP may denature RNA supported by the UV- and CD-spectroscopy patterns, change in area-under-the-curve (AUC) and abs260 nm measurements. Aptamer and triplex-forming oligomer (TFO) sequences were designed targeting RAS/Ras binding domain (RBD) and the impact of the NP on target interaction investigated. MgO NP promotes aptamer:RBD interaction and preserves triplex formation whereas NiO NP effects duplex migration and intensifies staining of the triplex suggesting a novel mechanism of interaction and conformation. These data strongly support the role of MgO, ZnO and NiO NP for nucleic acid nanobio interaction and suggest potential biomedical application for such novel interfaces.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Nanopartículas Metálicas/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA/farmacologia , Aptâmeros de Nucleotídeos/química , Humanos , Óxido de Magnésio/química , Níquel/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Óxidos/química , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , RNA/química , Óxido de Zinco/química
18.
Vet Pathol ; 56(1): 143-151, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222053

RESUMO

A field study addressing causes of mortality in freshly dead northern elephant seals ( Mirounga angustirostris, Gill, 1866) was conducted on San Miguel Island, California, in February 2015. Necropsies were performed on 18 pups ranging in age from stillbirths to approximately 7 to 8 weeks. The primary gross diagnoses in these pups included trauma, myopathy, starvation/emaciation, infections, congenital anomalies, and perinatal mortality. However, 6 (33%) had a previously unrecognized myopathy characterized by multiple white streaks that were most obvious within the inner layer of the abdominal wall and the small innermost ventral intercostal muscles. Following histological examination, 2 more pups from San Miguel Island and 6 pups from The Marine Mammal Center (Sausalito, California) were found to have similar lesions. Histologically, the lesions within the skeletal muscles were characterized by a multifocal polyphasic, mild to severe, acute to subacute necrotizing myopathy with mineralization. Acute necrosis and degeneration characterized by pyknotic nuclei, eosinophilic cytoplasm and cytoplasmic vacuolization were found in smooth muscle myocytes within the urinary bladder and digestive system. Degeneration of myocytes was present in the tunica media of a few small- to medium-sized vessels and was characterized by a vacuolar degeneration and occasionally necrosis. This condition has been termed multifocal necrotizing myopathy. A cause of this myopathy was not identified.


Assuntos
Doenças Musculares/veterinária , Focas Verdadeiras , Animais , California/epidemiologia , Feminino , Masculino , Doenças Musculares/patologia
19.
Int J Nanomedicine ; 13: 4523-4536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127604

RESUMO

INTRODUCTION: Biomedical applications of nanoparticles (NPs) as enzyme inhibitors have recently come to light. Oxides of metals native to the physiological environment (eg, Fe, Zn, Mg, etc.) are of particular interest-especially the functional consequences of their enzyme interaction. MATERIALS AND METHODS: Here, Fe2O3, zinc oxide (ZnO), magnesium oxide (MgO) and nickel oxide (NiO) NPs are compared to copper (Cu) and boron carbide (B4C) NPs. The functional impact of NP interaction to the model enzyme luciferase is determined by 2-dimensional fluorescence difference spectroscopy (2-D FDS) and 2-dimensional photoluminescence difference spectroscopy (2-D PLDS). By 2-D FDS analysis, the change in maximal intensity and in 2-D FDS area under the curve (AUC) is in the order Cu~B4C>ZnO>NiO>>Fe2O3>MgO. The induced changes in protein conformation are confirmed by tryptic digests and gel electrophoresis. RESULTS: Analysis of possible trypsin cleavage sites suggest that cleavage mostly occurs in the range of residues 112-155 and 372-439, giving a major 45 kDa band. By 2-D PLDS, it is found that B4C NPs completely ablate bioluminescence, while Cu and Fe2O3 NPs yield a unique bimodal negative decay rate, -7.67×103 and -3.50×101 relative light units respectively. Cu NPs, in particular, give a remarkable 271% change in enzyme activity. Molecular dynamics simulations in water predicted that the surfaces of metal oxide NPs become capped with metal hydroxide groups under physiological conditions, while the surface of B4C becomes populated with boronic acid or borinic acid groups. These predictions are supported by the experimentally determined zeta potential. Thin layer chromatography patterns further support this conception of the NP surfaces, where stabilizing interactions were in the order ionic>polar>non-polar for the series tested. CONCLUSION: Overall the results suggest that B4C and Cu NP functional dynamics on enzyme biochemistry are unique and should be examined further for potential ramifications on other model, physiological or disease-relevant enzymes.


Assuntos
Luciferases/metabolismo , Nanopartículas Metálicas/química , Células 3T3 , Animais , Área Sob a Curva , Compostos de Boro/química , Dicroísmo Circular , Cobre/química , Luciferina de Vaga-Lumes/metabolismo , Cinética , Nanopartículas Metálicas/ultraestrutura , Camundongos , Modelos Moleculares , Óxidos/química , Espectrometria de Fluorescência
20.
J Wildl Dis ; 54(4): 659-670, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29733766

RESUMO

Emergent hypermucoviscous (HMV) strains of Klebsiella pneumoniae have been reported in multiple marine mammal species; however, there is limited information regarding the epidemiology and pathogenesis of this infection in these species. We determined the prevalence of HMV K. pneumoniae in wild-caught and stranded marine mammal populations on the US Pacific Coast. Samples were collected from 270 free-ranging California sea lions (CSLs; Zalophus californianus) captured at three discrete sampling sites and from 336 stranded marine mammals of various species. We recovered HMV K. pneumoniae only from CSLs, with a prevalence of 1.5% (4 of 275) in stranded animals, compared with 1.1% (3 of 270) in wild-caught animals. We assessed the phenotypic and genotypic variability of recovered HMV K. pneumoniae isolates recovered from CSLs ( n=11) and of archival HMV and non-HMV isolates from stranded marine mammals ( n=19). All but two HMV isolates were of the K2 serotype, whereas none of the non-HMV isolates belonged to this serotype. Of the HMV isolates, 96% (24 of 25) were PCR positive for the HMV-associated gene p- rmpA, whereas 92% (23 of 25) were PCR positive for p- rmpA2. Genetic fingerprinting by repetitive extragenic palindromic PCR showed four discrete clusters, demonstrating genotypic variability that loosely correlated with phenotype. Antimicrobial susceptibility testing revealed all isolates from stranded CSLs were susceptible to ceftiofur, indicating this antimicrobial agent is an appropriate choice for treatment of HMV K. pneumoniae infections in stranded CSLs. Our culture assay could reliably detect HMV K. pneumoniae from concentrations as low as 102 colony-forming units per milligram of feces. We identified the presence of HMV K. pneumoniae in both wild-caught and stranded CSLs from the US Pacific Coast and highlight the need for further studies to evaluate the potential impact of this pathogen on marine mammal health.


Assuntos
Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , Leões-Marinhos/microbiologia , Focas Verdadeiras/microbiologia , Animais , Animais Selvagens , California/epidemiologia , Feminino , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Masculino , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...