Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(2): 1109-1118, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38170989

RESUMO

Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(µ-OH)2(µ-1,3-OAc)(κ-OAc)2(pyR)4]PF6 ([1R]PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a µ-1,3 bridging mode, forming [Co2(µ-OH)2(µ-1,3-OAc)2(pyR)4]2+ ([2R]2+). [2R]2+ is susceptible to solvent binding, affording [Co2(µ-OH)2(µ-1,3-OAc)(κ-OAc)(MeCN)(pyR)4]2+ ([3R]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1R]+, [2R]2+, and [3R]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.

2.
Inorg Chem ; 60(20): 15599-15609, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606250

RESUMO

Active site hydrogen-bond (H-bond) networks represent a key component by which metalloenzymes control the formation and deployment of high-valent transition metal-oxo intermediates. We report a series of dinuclear cobalt complexes that serve as structural models for the nonheme diiron enzyme family and feature a Co2(µ-OH)2 diamond core stabilized by intramolecular H-bond interactions. We define the conditions required for the kinetically controlled synthesis of these complexes: [Co2(µ-OH)2(µ-OAc)(κ1-OAc)2(pyR)4][PF6] (1R), where OAc = acetate and pyR = pyridine with para-substituent R, and we describe a homologous series of 1R in which the para-R substituent on pyridine is modulated. The solid state X-ray diffraction (XRD) structures of 1R are similar across the series, but in solution, their 1H NMR spectra reveal a linear free energy relationship (LFER) where, as R becomes increasingly electron-withdrawing, the intramolecular H-bond interaction between bridging µ-OH and κ1-acetate ligands results in increasingly "oxo-like" µ-OH bridges. Deprotonation of the bridging µ-OH results in the quantitative conversion to corresponding cubane complexes: [Co4(µ-O)4(µ3-OAc)4(pyR)4] (2R), which represent the thermodynamic sink of self-assembly. These reactions are unusually slow for rate-limiting deprotonation events, but rapid-mixing experiments reveal a 6000-fold rate acceleration on going from R = OMe to R = CN. These results suggest that we can tune reactivity by modulating the µ-OH pKa in the presence of intramolecular H-bond interactions to maintain stability as the octahedral d6 centers become increasingly acidic. Nature may similarly employ dynamic carboxylate-mediated H-bond interactions to control the reactivity of acidic transition metal-oxo intermediates.


Assuntos
Materiais Biomiméticos/química , Cobalto/química , Compostos Organometálicos/química , Materiais Biomiméticos/síntese química , Ligação de Hidrogênio , Estrutura Molecular , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...