Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 38(41): 8798-8808, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171090

RESUMO

One of the two major cholinergic centers of the mammalian brain is located in the midbrain, i.e., the pedunculopontine tegmentum (PPTg) and the adjacent laterodorsal tegmentum. These cholinergic neurons have been shown to be important for e.g., arousal, reward associations, and sleep. They also have been suggested to mediate sensorimotor gating, measured as prepulse inhibition of startle (PPI). PPI disruptions are a hallmark of schizophrenia and are observed in various other psychiatric disorders, where they are associated with, and often predictive of, other cognitive symptoms. PPI has been proposed to be mediated by a short midbrain circuitry including inhibitory cholinergic projections from PPTg to the startle pathway. Although the data indicating the involvement of the PPTg is very robust, some more recent evidence challenges that there is a cholinergic contribution to PPI. We here use transient optogenetic activation of specifically the cholinergic PPTg neurons in male and female rats to address their role in startle modulation in general, and in PPI specifically. Although we could confirm the crucial role of PPTg cholinergic neurons in associative reward learning, validating our experimental approach, we found that activation of cholinergic PPTg neurons did not inhibit startle responses. In contrast, activation of cholinergic PPTg neurons enhanced startle, which is in accordance with their general role in arousal and indicate a potential involvement in sensitization of startle. We conclude that noncholinergic PPTg neurons mediate PPI in contrast to the longstanding hypothetical view that PPI is mediated by cholinergic PPTg neurons.SIGNIFICANCE STATEMENT Activation of cholinergic neurons in the midbrain has been assumed to mediate prepulse inhibition of startle (PPI), a common measure of sensorimotor gating that is disrupted in schizophrenia and other psychiatric disorders. We here revisit this long-standing hypothesis using optogenetic activation of these specific neurons combined with startle testing in rats. In contrast to the hypothetical role of these neurons in startle modulation, we show that their activation leads to an increase of baseline startle and to prepulse facilitation. This supports recent data by others that have started to cast some doubt on the cholinergic hypothesis of PPI, and calls for a revision of the theoretical construct of PPI mechanisms.


Assuntos
Neurônios Colinérgicos/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Condicionamento Clássico/fisiologia , Feminino , Masculino , Optogenética , Ratos Long-Evans , Ratos Transgênicos , Recompensa
2.
Front Behav Neurosci ; 9: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717295

RESUMO

Prepulse inhibition (PPI) of startle occurs when intensity stimuli precede stronger startle-inducing stimuli by 10-1000 ms. PPI deficits are found in individuals with schizophrenia and other psychiatric disorders, and they correlate with other cognitive impairments. Animal research and clinical studies have demonstrated that both PPI and cognitive function can be enhanced by nicotine. PPI has been shown to be mediated, at least in part, by mesopontine cholinergic neurons that project to pontine startle neurons and activate muscarinic and potentially nicotine receptors (nAChRs). The subtypes and anatomical location of nAChRs involved in mediating and modulating PPI remain unresolved. We tested the hypothesis that nAChRs that are expressed by pontine startle neurons contribute to PPI. We also explored whether or not these pontine receptors are responsible for the nicotine enhancement of PPI. While systemic administration of nAChR antagonists had limited effects on PPI, PnC microinfusions of the non-α7nAChR preferring antagonist TMPH, but not of the α7nAChR antagonist MLA, into the PnC significantly reduced PPI. Electrophysiological recordings from startle-mediating PnC neurons confirmed that nicotine affects excitability of PnC neurons, which could be antagonized by TMPH, but not by MLA, indicating the expression of non-α7nAChR. In contrast, systemic nicotine enhancement of PPI was only reversed by systemic MLA and not by TMPH or local microinfusions of MLA into the PnC. In summary, our data indicate that non-α7nAChRs in the PnC contribute to PPI at stimulus intervals of 100 ms or less, whereas activation of α7nAChRs in other brain areas is responsible for the systemic nicotine enhancement of PPI. This is important knowledge for the correct interpretation of behavioral, preclinical, and clinical data as well as for developing drugs for the amelioration of PPI deficits and the enhancement of cognitive function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...