Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 23(11): e13761, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201315

RESUMO

PURPOSE: Medical physics computed tomography (CT) practice involves measurements to determine CTDIvol on representative clinical CT protocols. In current practice the majority of CT exams employ helical scans. To determine CTDIvol for a helical scan, one measures CTDIw with an axial scan, then divides by the pitch. Problems arise in CT units where one is unable to select an axial scan with the same detector configuration and pre-patient (bowtie) filtration that is employed on the helical scan. Presented is a method to measure CTDIw on helical scans. METHODS: The body and head CTDI phantoms were supported on the gantry shroud with brackets attached to the phantom. The phantom is above the tabletop and remains stationary during helical scans as the table moves beneath the phantom. With the phantom stationary, the CTDIw associated with head and body helical scans was measured. CTDIw was also measured for head and body axial scans with the same pre-patient filtrations and detector configurations. RESULTS: For both the head and body CTDI phantom the agreement between the axial and helical CTDIw measurements was <1.5%. CONCLUSIONS: Body and head CTDIw and CTDIvol can be directly measured by employing helical scans with the method in this paper.


Assuntos
Tomografia Computadorizada Espiral , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Cintilografia
2.
J Med Phys ; 43(4): 221-229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30636847

RESUMO

PURPOSE: Dose calculation accuracy of the Varian Eclipse treatment planning system (TPS) is empirically assessed for small-aperture fields using a Mevion S250 double scattering proton therapy system. MATERIALS AND METHODS: Five spherical pseudotumors were modeled in a RANDO head phantom. Plans were generated for the targets with apertures of 1, 2, 3, 4, or 5 cm diameter using one, two, and three beams. Depth-dose curves and lateral profiles of the beams were taken with the planned blocks and compared to Eclipse calculations. Dose distributions measured with EBT3 films in the phantom were also compared to Eclipse calculations. Film quenching effect was simulated and considered. RESULTS: Depth-dose scans in water showed a range pullback (up to 2.0 mm), modulation widening (up to 9.5 mm), and dose escalation in proximal end and sub-peak region (up to 15.5%) when compared to the Eclipse calculations for small fields. Measured full width at half maximum and penumbrae for lateral profiles differed <1.0 mm from calculations for most comparisons. In the phantom study, Eclipse TPS underestimated sub-peak dose. Gamma passing rates improved with each beam added to the plans. Greater range pullback and modulation degradation versus water scans were observed due to film quenching, which became more noticeable as target size increased. CONCLUSIONS: Eclipse TPS generates acceptable target coverage for small targets with carefully arranged multiple beams despite relatively large dose discrepancy for each beam. Surface doses higher than Eclipse calculations can be mitigated with multiple beams. When using EBT3 film, the quenching effect should be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...