Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915683

RESUMO

Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.

2.
J Osteopath Med ; 124(5): 219-230, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197301

RESUMO

CONTEXT: The evidence for the efficacy of osteopathic manipulative treatment (OMT) in the management of low back pain (LBP) is considered weak by systematic reviews, because it is generally based on low-quality studies. Consequently, there is a need for more randomized controlled trials (RCTs) with a low risk of bias. OBJECTIVES: The objective of this study is to evaluate the efficacy of an OMT intervention for reducing pain and disability in patients with chronic LBP. METHODS: A single-blinded, crossover, RCT was conducted at a university-based health system. Participants were adults, 21-65 years old, with nonspecific LBP. Eligible participants (n=80) were randomized to two trial arms: an immediate OMT intervention group and a delayed OMT (waiting period) group. The intervention consisted of three to four OMT sessions over 4-6 weeks, after which the participants switched (crossed-over) groups. The primary clinical outcomes were average pain, current pain, Patient-Reported Outcomes Measurement Information System (PROMIS) 29 v1.0 pain interference and physical function, and modified Oswestry Disability Index (ODI). Secondary outcomes included the remaining PROMIS health domains and the Fear Avoidance Beliefs Questionnaire (FABQ). These measures were taken at baseline (T0), after one OMT session (T1), at the crossover point (T2), and at the end of the trial (T3). Due to the carryover effects of OMT intervention, only the outcomes obtained prior to T2 were evaluated utilizing mixed-effects models and after adjusting for baseline values. RESULTS: Totals of 35 and 36 participants with chronic LBP were available for the analysis at T1 in the immediate OMT and waiting period groups, respectively, whereas 31 and 33 participants were available for the analysis at T2 in the immediate OMT and waiting period groups, respectively. After one session of OMT (T1), the analysis showed a significant reduction in the secondary outcomes of sleep disturbance and anxiety compared to the waiting period group. Following the entire intervention period (T2), the immediate OMT group demonstrated a significantly better average pain outcome. The effect size was a 0.8 standard deviation (SD), rendering the reduction in pain clinically significant. Further, the improvement in anxiety remained statistically significant. No study-related serious adverse events (AEs) were reported. CONCLUSIONS: OMT intervention is safe and effective in reducing pain along with improving sleep and anxiety profiles in patients with chronic LBP.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38817342

RESUMO

Objective: Fragile X Syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorder. Currently, there are no established biomarkers for predicting and monitoring drug effects in FXS, and no approved therapies are available. Previous studies have shown electrophysiological changes in the brain using electroencephalography (EEG) in individuals with FXS and animal models. These changes may be influenced by drug therapies. In this study, we aimed to assess the reliability of resting-state EEG measures in individuals with FXS, which could potentially serve as a biomarker for drug discovery. Methods: We collected resting-state EEG data from 35 individuals with FXS participating in placebo-controlled clinical trials (23 males, 12 females; visit age mean+/-std 25.6 +/-8.3). The data were analyzed for various spectral features using intraclass correlation analysis to evaluate test-retest reliability. The intervals between EEG recordings ranged from same-day measurements to up to six weeks apart. Results: Our results showed high reliability for most spectral features, with same-day reliability exceeding 0.8. Features of interest demonstrated ICC values of 0.60 or above at longer intervals. Among the features, alpha band relative power exhibited the highest reliability. Conclusion: These findings indicate that resting-state EEG can provide consistent and reproducible measures of brain activity in individuals with FXS. This supports the potential use of EEG as an objective biomarker for evaluating the effects of new drugs in FXS. Significance: The reliable measurements obtained from power spectrum-based resting-state EEG make it a promising tool for assessing the impact of small molecule drugs in FXS.

4.
ACS Chem Neurosci ; 13(23): 3389-3402, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36411085

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide expansion on the FMR1 gene and characterized by intellectual disability, sensory hypersensitivity, executive function difficulties, and social anxiety. Recently, efforts to define neural biomarkers for FXS have highlighted disruptions to power in the alpha frequency band; however the dynamic mechanisms supporting these findings are poorly understood. The current study aimed to explore the temporal and hemispheric dynamics supporting alpha phenotypes in FXS and their relationship with neural phenotypes related to auditory processing using electroencephalography during an auditory evoked task. Adolescents and adults (N = 36) with FXS and age/sex matched typically developing controls (N = 40) completed an auditory chirp task. Frontal alpha power in the prestimulus period was decomposed into "bursts" using percentile thresholding, then assessed for number of bursts per second (burst count) and burst length. Data were compared across left and right hemispheres to assess lateralization of neural activity. Individuals with FXS showed more differences in alpha power compared to TDC primarily in the right hemisphere. Notably, alpha hemisphere outcomes in males with FXS were driven by the number of times they entered a dynamically relevant period of alpha (burst count) rather than length of time spent in alpha. Females with FXS showed reduced burst counts but remained in sustained high alpha states for longer periods of time. Length of time spent in alpha may reflect a modulatory or compensatory mechanism capable of recovering sensory processing abilities in females with FXS resulting in a less severe clinical presentation. Right hemisphere abnormalities may impact sensory processing differences between males and females with FXS. The relationship between alpha burst length, count, sex, and hemisphere may shed light on underlying mechanisms for previously observed alpha power abnormalities in FXS and their variation by sex.


Assuntos
Ritmo alfa , Cérebro , Síndrome do Cromossomo X Frágil , Feminino , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Cérebro/fisiopatologia , Masculino , Fatores Sexuais
5.
PM R ; 14(12): 1417-1429, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719122

RESUMO

BACKGROUND: Neck pain (NP) affects up to 70% of individuals at some point in their lives. Systematic reviews indicate that manual treatments can be moderately effective in the management of chronic, nonspecific NP. However, there is a paucity of studies specifically evaluating the efficacy of osteopathic manipulative treatment (OMT). OBJECTIVE: To evaluate the efficacy of OMT in reducing pain and disability in patients with chronic NP. DESIGN: Single-blinded, cross-over, randomized-controlled trial. SETTING: University-based, osteopathic manipulative medicine outpatient clinic. PARTICIPANTS: Ninety-seven participants, 21 to 65 years of age, with chronic, nonspecific NP. INTERVENTIONS: Participants were randomized to two trial arms: immediate OMT intervention or waiting period first. The intervention consisted of three to four OMT sessions over 4 to 6 weeks, after which the participants switched groups. MAIN OUTCOME MEASURES: Primary outcome measures were pain intensity (average and current) on the numerical rating scale and Neck Disability Index. Secondary outcomes included Patient-Reported Outcomes Measurement Information System-29 (PROMIS-29) health domains and Fear Avoidance Beliefs Questionnaire. Outcomes obtained prior to the cross-over allocation were evaluated using general linear models and after adjusting for baseline values. RESULTS: A total of 38 and 37 participants were available for the analysis in the OMT and waiting period groups, respectively. The results showed significantly better primary outcomes in the immediate OMT group for reductions in average pain (-1.02, 95% confidence interval [CI] -1.72, -0.32; p = .005), current pain (-1.02, 95% CI -1.75, -0.30; p = .006), disability (-5.30%, 95% CI -9.2%, -1.3%; p = .010) and improved secondary outcomes (PROMIS) related to sleep (-3.25, 95% CI -6.95, -1.54; p = .003), fatigue (-3.26, 95% CI -6.04, -0.48; p = .022), and depression (-2.59, 95% CI -4.73, -0.45; p = .018). The effect sizes were in the clinically meaningful range between 0.5 and 1 standard deviation. No study-related serious adverse events were reported. CONCLUSIONS: OMT is relatively safe and effective in reducing pain and disability along with improving sleep, fatigue, and depression in patients with chronic NP immediately following treatment delivered over approximately 4 to 6 weeks.


Assuntos
Dor Crônica , Dor Lombar , Osteopatia , Humanos , Osteopatia/métodos , Cervicalgia/terapia , Dor Lombar/terapia , Resultado do Tratamento , Dor Crônica/terapia , Fadiga
6.
J Biomech ; 125: 110541, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34198020

RESUMO

Challenging trunk neuromuscular control maximally using a seated balancing task is useful for unmasking impairments that may go unnoticed with traditional postural sway measures and appears to be safe to assess in healthy individuals. This study investigates whether the stability threshold, reflecting the upper limits in trunk neuromuscular control, is sensitive to pain and disability and is safe to assess in low back pain (LBP) patients. Seventy-nine subjects with non-specific LBP balanced on a robotic seat while rotational stiffness was gradually reduced. The critical rotational stiffness, KCrit, that marked the transition between stable and unstable balance was used to quantify the individual's stability threshold. The effects of current pain, 7-day average pain, and disability on KCrit were assessed, while controlling for age, sex, height, and weight. Adverse events (AEs) recorded at the end of the testing session were used to assess safety. Current pain and 7-day average pain were strongly associated with KCrit (current pain p < 0.001, 7-day pain p = 0.023), reflecting that people experiencing more pain have poorer trunk neuromuscular control. There was no evidence that disability was associated with KCrit, although the limited range in disability scores in subjects may have impacted the analysis. AEs were reported in 13 out of 79 total sessions (AE Severity: 12 mild, 1 moderate; AE Relatedness: 1 possibly, 11 probably, 1 definitely-related to the study). Stability threshold is sensitive to pain and appears safe to assess in people with LBP, suggesting it could be useful for identifying trunk neuromuscular impairments and guiding rehabilitation.


Assuntos
Dor Lombar , Robótica , Humanos , Equilíbrio Postural , Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...