Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 14(4): 1578-1589, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33786999

RESUMO

Sepsis is a major cause of mortality among hospitalized patients worldwide. Shorter time to administration of broad-spectrum antibiotics is associated with improved outcomes, but early recognition of sepsis remains a major challenge. In a two-center cohort study with prospective sample collection from 1400 adult patients in emergency departments suspected of sepsis, we sought to determine the diagnostic and prognostic capabilities of a machine-learning algorithm based on clinical data and a set of uncommonly measured biomarkers. Specifically, we demonstrate that a machine-learning model developed using this dataset outputs a score with not only diagnostic capability but also prognostic power with respect to hospital length of stay (LOS), 30-day mortality, and 3-day inpatient re-admission both in our entire testing cohort and various subpopulations. The area under the receiver operating curve (AUROC) for diagnosis of sepsis was 0.83. Predicted risk scores for patients with septic shock were higher compared with patients with sepsis but without shock (p < 0.0001). Scores for patients with infection and organ dysfunction were higher compared with those without either condition (p < 0.0001). Stratification based on predicted scores of the patients into low, medium, and high-risk groups showed significant differences in LOS (p < 0.0001), 30-day mortality (p < 0.0001), and 30-day inpatient readmission (p < 0.0001). In conclusion, a machine-learning algorithm based on electronic medical record (EMR) data and three nonroutinely measured biomarkers demonstrated good diagnostic and prognostic capability at the time of initial blood culture.


Assuntos
Diagnóstico Precoce , Registros Eletrônicos de Saúde/estatística & dados numéricos , Aprendizado de Máquina , Sepse/diagnóstico , Idoso , Área Sob a Curva , Biomarcadores/sangue , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Mortalidade Hospitalar , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Readmissão do Paciente/estatística & dados numéricos , Prognóstico , Estudos Prospectivos , Curva ROC , Sepse/sangue , Sepse/microbiologia , Sepse/mortalidade
2.
Curr Pharm Des ; 20(41): 6422-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24975605

RESUMO

Cancer is a leading cause of death worldwide and an estimated 1 in 4 deaths in the United States is due to cancer. Despite recent advances in cancer treatment, adverse effects related to cancer therapy remain a limiting factor for many patients. The ideal cancer treatment would selectively target cancerous cells while sparing normal, healthy cells to offer maximal therapeutic benefit while minimizing toxicity. Telomeres are structurally unique DNA sequences at the end of human chromosomes, which play an integral role in the cellular mortality of normal cells. As telomeres shorten with successive cellular divisions, cells develop chromosomal instability and undergo either apoptosis or senescence. In many cancers, this apoptosis or senescence is avoided as normal telomere length is maintained by a ribonucleoprotein reverse transcriptase called telomerase. Telomerase is expressed in more than 85% of all cancers and confers cancerous cells with a replicative immortality, which is a hallmark of malignant tumors. In contrast, telomerase activity is not detectable in the majority of normal somatic cell populations. Therefore, the targeting of telomerase and telomere maintenance mechanisms represent a potentially promising therapeutic approach for various types of cancer. This review evaluates the roles of GRN163L, T-oligo and small molecule G-quadruplex stabilizers as potential anticancer therapies by targeting telomerase and other telomere maintenance mechanisms.


Assuntos
Antineoplásicos/uso terapêutico , Quadruplex G/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oligonucleotídeos/química , Telomerase/antagonistas & inibidores , Telômero/metabolismo , Animais , Humanos , Telomerase/metabolismo , Telômero/química
3.
Biochem Biophys Res Commun ; 446(2): 596-601, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24632202

RESUMO

In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3'-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Homeostase do Telômero/efeitos dos fármacos , Proteínas de Ligação a Telômeros/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Células HT29 , Humanos , Homeostase do Telômero/genética
4.
J Antimicrob Chemother ; 67(12): 2814-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22875850

RESUMO

OBJECTIVES: To determine the potential for delafloxacin to select for resistant mutants in methicillin-resistant Staphylococcus aureus (MRSA), including isolates with existing mutations in the quinolone resistance determining region (QRDR). METHODS: Susceptibility testing by broth microdilution was performed on 30 MRSA clinical isolates. For four of these isolates, the presence or absence of mutations in the QRDR was characterized. Resistance selection was performed on these four isolates by spreading cells on drug-containing agar plates followed by incubation for 48 h. Resistance frequencies and mutant prevention concentrations (MPCs) were calculated for each; PCR amplification and sequencing were performed using standard methods to characterize mutations in the QRDR. Growth rate analysis was performed and relative fitness was determined. RESULTS: Delafloxacin demonstrated potent in vitro activity against this set of MRSA isolates, with MICs of 0.008-1 mg/L and an MIC(50) and MIC(90) of 0.03 and 0.5 mg/L, respectively. Spontaneous delafloxacin resistance frequencies for the MRSA strains were 2 × 10(-9) to <9.5 × 10(-11). Delafloxacin MPCs were one to four times the MIC for any isolate, lower than those of comparator quinolones. Some delafloxacin-selected mutants showed a fitness cost when co-cultured with the parent strain. CONCLUSIONS: Delafloxacin demonstrates excellent antibacterial potency and exhibits a low probability for the selection of resistant mutants in MRSA. Although mutants can be selected at low frequencies in vitro from quinolone-resistant isolates, delafloxacin MICs and MPCs remain low and a fitness cost can be observed. Consequently delafloxacin warrants further investigation for the potential treatment of drug-resistant MRSA infections.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mutação , Quinolonas/farmacologia , Análise Mutacional de DNA , DNA Bacteriano/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Seleção Genética
5.
Antimicrob Agents Chemother ; 52(10): 3550-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18663023

RESUMO

New and improved antibiotics are urgently needed to combat the ever-increasing number of multidrug-resistant bacteria. In this study, we characterized several members of a new oxazolidinone family, R chi-01. This antibiotic family is distinguished by having in vitro and in vivo activity against hospital-acquired, as well as community-acquired, pathogens. We compared the 50S ribosome binding affinity of this family to that of the only marketed oxazolidinone antibiotic, linezolid, using chloramphenicol and puromycin competition binding assays. The competition assays demonstrated that several members of the R chi-01 family displace, more effectively than linezolid, compounds known to bind to the ribosomal A site. We also monitored binding by assessing whether R chi-01 compounds protect U2585 (Escherichia coli numbering), a nucleotide that influences peptide bond formation and peptide release, from chemical modification by carbodiimide. The R chi-01 oxazolidinones were able to inhibit translation of ribosomes isolated from linezolid-resistant Staphylococcus aureus at submicromolar concentrations. This improved binding corresponds to greater antibacterial activity against linezolid-resistant enterococci. Consistent with their ribosomal A-site targeting and greater potency, the R chi-01 compounds promote nonsense suppression and frameshifting to a greater extent than linezolid. Importantly, the gain in potency does not impact prokaryotic specificity as, like linezolid, the members of the R chi-01 family show translation 50% inhibitory concentrations that are at least 100-fold higher for eukaryotic than for prokaryotic ribosomes. This new family of oxazolidinones distinguishes itself from linezolid by having greater intrinsic activity against linezolid-resistant isolates and may therefore offer clinicians an alternative to overcome linezolid resistance. A member of the R chi-01 family of compounds is currently undergoing clinical trials.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Oxazolidinonas/farmacologia , Ribossomos/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Acetamidas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação , Ligação Competitiva , Farmacorresistência Bacteriana Múltipla , Humanos , Linezolida , Testes de Sensibilidade Microbiana , Oxazolidinonas/química , Oxazolidinonas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , Ribossomos/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
6.
Nucleic Acids Res ; 36(1): e4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18084036

RESUMO

This work describes the novel use of tolC as a selectable/counter-selectable marker for the facile modification of DNA in Escherichia coli. Expression of TolC (an outer membrane protein) confers relative resistance to toxic small molecules, while its absence renders the cell tolerant to colicin E1. These features, coupled with the lambdaredgam recombination system, allow for selection of tolC insertions/deletions anywhere on the E. coli chromosome or on plasmid DNA. This methodology obviates the need for minimal growth media, specialized wash protocols and the lengthy incubation times required by other published recombineering methods. As a rigorous test of the TolC selection system, six out of seven 23S rRNA genes were consecutively and seamlessly removed from the E. coli chromosome without affecting expression of neighboring genes within the complex rrn operons. The resulting plasmid-free strain retains one 23S rRNA gene (rrlC) in its natural location on the chromosome and is the first mutant of its kind. These new rRNA mutants will be useful in the study of rRNA gene regulation and ribosome function. Given its high efficiency, low background and facility in rich media, tolC selection is a broadly applicable method for the modification of DNA by recombineering.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genes de RNAr , Engenharia Genética/métodos , Proteínas de Membrana Transportadoras/genética , Óperon , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Marcadores Genéticos , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Regiões Promotoras Genéticas , RNA Ribossômico 23S/genética , Recombinação Genética
7.
J Mol Biol ; 342(3): 953-70, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15342249

RESUMO

We report three crystal structures of the Mycobacterium tuberculosis cell division protein FtsZ, as the citrate, GDP, and GTPgammaS complexes, determined at 1.89, 2.60, and 2.08A resolution. MtbFtsZ crystallized as a tight, laterally oriented dimer distinct from the longitudinal polymer observed for alphabeta-tubulin. Mutational data on Escherichia coli FtsZ suggest that this dimer interface is important for proper protofilament and "Z-ring" assembly and function. An alpha-to-beta secondary structure conformational switch at the dimer interface is spatially analogous to, and has many of the hallmarks of, the Switch I conformational changes exhibited by G-proteins upon activation. The presence of a gamma-phosphate in the FtsZ active site modulates the conformation of the "tubulin" loop T3 (spatially analogous to the G-protein Switch II); T3 switching upon gamma-phosphate ligation is directly coupled to the alpha-to-beta switch by steric overlap. The dual conformational switches observed here for the first time in an FtsZ link GTP binding and hydrolysis to FtsZ (and tubulin) lateral assembly and Z-ring contraction, and they are suggestive of an underappreciated functional analogy between FtsZ, tubulin and G-proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Mycobacterium tuberculosis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , DNA Bacteriano/genética , Dimerização , Proteínas de Ligação ao GTP/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Bacteriol ; 186(1): 8-14, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14679218

RESUMO

Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. Söll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.


Assuntos
Aminoacil-tRNA Sintetases/genética , Methanococcaceae/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Meios de Cultura , Cisteína/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Methanococcaceae/genética , Aminoacil-RNA de Transferência/genética , Temperatura , Transformação Genética
9.
Antimicrob Agents Chemother ; 47(1): 188-95, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12499190

RESUMO

In order to probe the structure and function of the mycobacterial catalase-peroxidase enzyme (KatG), we employed a genetic approach using dominant-negative analysis of katG merodiploids. Transformation of Mycobacterium bovis BCG with various katG point mutants (expressed from low-copy-number plasmids) resulted in reductions in peroxidase and catalase activities as measured in cell extracts. These reductions in enzymatic activity usually correlated with increased resistance to the antituberculosis drug isoniazid (INH). However, for the N138S trans-dominant mutant, the catalase-peroxidase activity was significantly decreased while the sensitivity to INH was retained. trans-dominance required katG expression from multicopy plasmids and could not be demonstrated with katG mutants integrated elsewhere on the wild-type M. bovis BCG chromosome. Reversal of the mutant phenotype through plasmid exchange suggested the catalase-peroxidase deficiency occurred at the protein level and that INH resistance was not due to a second site mutation(s). Electrophoretic analysis of KatG proteins from the trans-dominant mutants showed a reduction in KatG dimers compared to WT and formation of heterodimers with reduced activity. The mutants responsible for these defects cluster around proposed active site residues: N138S, T275P, S315T, and D381G. In an attempt to identify mutants that might delimit the region(s) of KatG involved in subunit interactions, C-terminal truncations were constructed (with and without the D381G dominant-negative mutation). None of the C-terminal deletions were able to complement a DeltakatG strain, nor could they cause a dominant-negative effect on the WT. Taken together, these results suggest an intricate association between the amino- and carboxy-terminal regions of KatG and may be consistent with a domain-swapping mechanism for KatG dimer formation.


Assuntos
Catalase/genética , Proteínas de Escherichia coli/genética , Mutação , Mycobacterium tuberculosis/genética , Catalase/metabolismo , Catalase/fisiologia , Eletroforese em Gel de Ágar , Proteínas de Escherichia coli/fisiologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Peroxidase/metabolismo , Fenótipo
10.
Antimicrob Agents Chemother ; 46(11): 3549-54, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12384363

RESUMO

Escherichia coli under-expressing lepB was utilized to test cellular inhibition of signal peptidase I (SPase). For the construction of a lepB regulatable strain, the E. coli lepB gene was cloned into pBAD, with expression dependent on L-arabinose. The chromosomal copy of lepB was replaced with a kanamycin resistance gene, which was subsequently removed. SPase production by the lepB regulatable strain in the presence of various concentrations of L-arabinose was monitored by Western blot analysis. At lower arabinose concentrations growth proceeded more slowly, possibly due to a decrease of SPase levels in the cells. A penem SPase inhibitor with little antimicrobial activity against E. coli when tested at 100 micro M was utilized to validate the cell-based system. Under-expression of lepB sensitized the cells to penem, with complete growth inhibition observed at 10 to 30 micro M. Growth was rescued by increasing the SPase levels. The cell-based assay was used to test cellular inhibition of SPase by compounds that inhibit the enzyme in vitro. MD1, MD2, and MD3 are SPase inhibitors with antimicrobial activity against Staphylococcus aureus, although they do not inhibit growth of E. coli. MD1 presented the best spectrum of antimicrobial activity. Both MD1 and MD2 prevented growth of E. coli under-expressing lepB in the presence of polymyxin B nonapeptide, with growth rescue observed when wild-type levels of SPase were produced. MD3 and MD4, a reactive analog of MD3, inhibited growth of E. coli under-expressing lepB. However, growth rescue in the presence of these compounds following increased lepB expression was observed only after prolonged incubation.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Western Blotting , Carbapenêmicos/farmacologia , Clonagem Molecular , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Plasmídeos/genética
11.
Nat Biotechnol ; 20(5): 478-83, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981561

RESUMO

As the global threat of drug- and antibiotic-resistant bacteria continues to rise, new strategies are required to advance the drug discovery process. This work describes the construction of an array of Escherichia coli strains for use in whole-cell screens to identify new antimicrobial compounds. We used the recombination systems from bacteriophages lambda and P1 to engineer each strain in the array for low-level expression of a single, essential gene product, thus making each strain hypersusceptible to specific inhibitors of that gene target. Screening of nine strains from the array in parallel against a large chemical library permitted identification of new inhibitors of bacterial growth. As an example of the target specificity of the approach, compounds identified in the whole-cell screen for MurA inhibitors were also found to block the biochemical function of the target when tested in vitro.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Alquil e Aril Transferases/metabolismo , Alelos , Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Modelos Genéticos , Plasmídeos/metabolismo , Conformação Proteica , Recombinação Genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...