Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 15(1): 20180723, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958212

RESUMO

Many tropical fruit-feeding nymphalid butterflies are associated with either the forest canopy or the understorey; however, the exceptions offer insights into the origins of tropical diversity. As it occurs in both habitats of tropical forests in Ecuador and Peru, Archaeoprepona demophon is one such exception. We compared patterns of occurrence of A. demophon in the canopy and understorey and population genomic variation for evidence of ecological and genetic differentiation between habitats. We found that butterfly occurrences in the canopy were largely uncorrelated with occurrences in the understorey at both localities, indicating independent demographic patterns in the two habitats. We also documented modest, significant genome-level differentiation at both localities. Genetic differentiation between habitat types (separated by approx. 20 m in elevation) was comparable to levels of differentiation between sampling locations (approx. 1500 km). We conclude that canopy and understorey populations of A. demophon represent incipient independent evolutionary units. These findings support the hypothesis that divergence between canopy and understorey-associated populations might be a mechanism generating insect diversity in the tropics.


Assuntos
Borboletas , Animais , Evolução Biológica , Ecossistema , Equador , Florestas , Árvores , Clima Tropical
2.
Environ Entomol ; 46(6): 1202-1211, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29069401

RESUMO

One of the most tangible outcomes of climate change is change in the frequency of El Niño/La Niña events. They have a large impact on rainfall in the Western hemisphere, but their impact on tropical fauna is largely unknown. A decade long capture-mark-recapture study of the widespread Ecuadorian butterfly Nessaea hewitsoni (Felder & Felder) from an intact forest allowed us to analyze patterns of monthly and seasonal population dynamics before, during, and after an El Niño event. El Niño events did not affect long-term population size, but a 5-month delayed El Niño led to temporary emigration of females, with their subsequent return. Increased rainfall correlated with reduced survival in both sexes, but this effect was twice as strong in females. This investigation is the longest, continuous population study on any Neotropical insect species. Though we sampled on a modest scale, the magnitude of El Niño events suggests that our findings likely reflect insect population responses across a much larger portion of Amazonian forests. This study underscores the importance of analyzing multiple, interacting population parameters beyond local abundance in order to understand the biotic responses to El Niño and climate change in tropical systems. Had our analyses not included temporary emigration, no effect would have been detected because El Niño did not affect local population abundance.


Assuntos
Borboletas/fisiologia , Mudança Climática , El Niño Oscilação Sul , Animais , Equador , Feminino , Masculino , Densidade Demográfica , Dinâmica Populacional , Fatores Sexuais
3.
J Anim Ecol ; 81(3): 714-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22296222

RESUMO

1. Studies of seasonality in ecological diversity rarely extend over more than a few years, and few studies of seasonal diversity have explicitly investigated the influence of environmental factors on seasonal community composition, especially in tropical communities. 2. Our 10 years of monthly sampling in Amazonian Ecuador yielded 20 996 individuals of 137 fruit-feeding butterfly species. Seasonal cycles of rainfall drive annual cycles in species diversity and community similarity. Undetermined processes operating most strongly during the dry season maintain species diversity and high community similarity across years. 3. Seasonal cycles in community diversity and similarity are superimposed on a gradual decline in similarity between community samples on a decadal time-scale because of long-term changes in species abundances. 4. Monitoring and analysis of changes in community composition over a range of time-scales can be used to refine models of community dynamics by incorporating environmental factors necessary to predict the ecological impact of future climate change.


Assuntos
Biodiversidade , Borboletas/classificação , Borboletas/fisiologia , Estações do Ano , Clima Tropical , Animais , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...