Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung Cancer (Auckl) ; 5: 11-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28210138

RESUMO

OBJECTIVE: Esophageal adenocarcinoma (EAC) continues to be a disease associated with high mortality. Among the factors leading to poor outcomes are innate resistance to currently available therapies, advanced stage at diagnosis, and complex biology. Platinum and ionizing radiation form the backbone of treatment for the majority of patients with EAC. Of the multiple processes involved in response to platinum chemotherapy or ionizing radiation, deoxyribonucleic acid (DNA) repair has been a major player in cancer sensitivity to these agents. DNA repair defects have been described in various malignancies. The purpose of this study was to determine whether alterations in DNA repair are present in EAC compared with normal gastroesophageal tissues. METHODS: We analyzed the expression of genes involved in homologous recombination (HR), nonhomologous end-joining, and nucleotide excision repair (NER) pathways in 12 EAC tumor samples with their matched normal counterparts. These pathways were chosen because they are the main pathways involved in the repair of platinum- or ionizing-radiation-induced damage. In addition, abnormalities in these pathways have not been well characterized in EAC. RESULTS: We identified increased expression of at least one HR gene in eight of the EAC tumor samples. Alterations in the expression of EME1, a structure-specific endonuclease involved in HR, were the most prevalent, with messenger (m)RNA overexpression in six of the EAC samples. In addition, all EAC samples revealed decreased expression of at least one of numerous NER genes including XPC, XPA, DDB2, XPF, and XPG. CONCLUSION: Our study identified DNA repair dysregulation in EAC involving two critical pathways, HR and NER, and is the first demonstration of EME1 upregulation in any cancer. These DNA repair abnormalities have the potential to affect a number of processes such as genomic instability and therapy response, and the consequences of these defects deserve further study in EAC.

2.
Biochem Biophys Res Commun ; 432(4): 695-700, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23410754

RESUMO

During severe sepsis, microvesicles that are positive for tissue factor (TF) are at increased levels within blood and in pulmonary lavage. These microvesicles potentially disperse TF, the major initiator of the coagulation cascade, throughout multiple organ systems, initiating fibrin deposition and resultant ischemia. The source of these microvesicles has remained incompletely defined. Although TF(+) microvesicles are shed from cells that express nascent TF transcript in response to injury, recent findings revealed that circulating, full-length TF protein is detectable prior to these nascent transcripts. This finding suggested that the protein is released from constitutive sources as an acute response. We examined whether Staphylococcus aureus, the Gram-positive bacteria that is emerging as one of the most common etiologic agents in sepsis, is capable of stimulating the release of TF(+) microvesicles from a pulmonary cell line that constitutively expresses TF protein. We found that host cell invasion stimulated an acute release of TF(+) microvesicles and that these microvesicles mediated the transfer of the protein to TF-negative endothelial cells. We also found that transfer was inhibited by cholesterol-lowering simvastatin. Taken together, our findings reveal that S. aureus pathogenesis extends to the acute release of TF(+) microvesicles and that inhibiting dispersal by this mechanism may provide a therapeutic target.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Sepse/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Tromboplastina/metabolismo , Linhagem Celular , Vesículas Citoplasmáticas/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Transporte Proteico/efeitos dos fármacos , Sepse/metabolismo , Sinvastatina/farmacologia , Infecções Estafilocócicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...