Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513140

RESUMO

This work presents the effect of monovalent (Ag+, Na+), divalent (Ca2+, Cd2+), and trivalent (La3+) metal ion doping and annealing temperature (500, 800, and 1200 °C) on the structure, morphology, and magnetic properties of MnFe2O4/SiO2 ceramic nanocomposites synthesized via sol-gel method. Fourier-transform infrared spectroscopy confirms the embedding of undoped and doped MnFe2O4 nanoparticles in the SiO2 matrix at all annealing temperatures. In all cases, the X-ray diffraction (XRD) confirms the formation of MnFe2O4. In the case of undoped, di-, and trivalent metal-ion-doped gels annealed at 1200 °C, three crystalline phases (cristobalite, quartz, and tridymite) belonging to the SiO2 matrix are observed. Doping with mono- and trivalent ions enhances the nanocomposite's structure by forming single-phase MnFe2O4 at low annealing temperatures (500 and 800 °C), while doping with divalent ions and high annealing temperature (1200 °C) results in additional crystalline phases. Atomic force microscopy (AFM) reveals spherical ferrite particles coated by an amorphous layer. The AFM images showed spherical particles formed due to the thermal treatment. The structural parameters calculated by XRD (crystallite size, crystallinity, lattice constant, unit cell volume, hopping length, density, and porosity) and AFM (particle size, powder surface area, and thickness of coating layer), as well as the magnetic parameters (saturation magnetization, remanent magnetization, coercivity, and anisotropy constant), are contingent on the doping ion and annealing temperature. By doping, the saturation magnetization and magnetocrystalline anisotropy decrease for gels annealed at 800 °C, but increase for gels annealed at 1200 °C, while the remanent magnetization and coercivity decrease by doping at both annealing temperatures (800 and 1200 °C).

2.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298654

RESUMO

CoFe2O4 is a promising functional material for various applications. The impact of doping with different cations (Ag+, Na+, Ca2+, Cd2+, and La3+) on the structural, thermal, kinetics, morphological, surface, and magnetic properties of CoFe2O4 nanoparticles synthesized via the sol-gel method and calcined at 400, 700 and 1000 °C is investigated. The thermal behavior of reactants during the synthesis process reveals the formation of metallic succinates up to 200 °C and their decomposition into metal oxides that further react and form the ferrites. The rate constant of succinates' decomposition into ferrites calculated using the isotherms at 150, 200, 250, and 300 °C decrease with increasing temperature and depend on the doping cation. By calcination at low temperatures, single-phase ferrites with low crystallinity were observed, while at 1000 °C, the well-crystallized ferrites were accompanied by crystalline phases of the silica matrix (cristobalite and quartz). The atomic force microscopy images reveal spherical ferrite particles covered by an amorphous phase, the particle size, powder surface area, and coating thickness contingent on the doping ion and calcination temperature. The structural parameters estimated via X-ray diffraction (crystallite size, relative crystallinity, lattice parameter, unit cell volume, hopping length, density) and the magnetic parameters (saturation magnetization, remanent magnetization, magnetic moment per formula unit, coercivity, and anisotropy constant) depend on the doping ion and calcination temperature.


Assuntos
Nanocompostos , Dióxido de Silício , Dióxido de Silício/química , Cinética , Fenômenos Magnéticos , Cátions
3.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110958

RESUMO

Here we report investigations of bulk and nano-sized Pr0.65Sr(0.35-x)CaxMnO3 compounds (x ≤ 0.3). Solid-state reaction was implemented for polycrystalline compounds and a modified sol-gel method was used for nanocrystalline compounds. X-ray diffraction disclosed diminishing cell volume with increasing Ca substitution in Pbnm space group for all samples. Optical microscopy was used for bulk surface morphology and transmission electron microscopy was utilized for nano-sized samples. Iodometric titration showed oxygen deficiency for bulk compounds and oxygen excess for nano-sized particles. Measurements of resistivity of bulk samples revealed features at temperatures associated with grain boundary condition and with ferromagnetic (FM)/paramagnetic (PM) transition. All samples exhibited negative magnetoresistivity. Magnetic critical behavior analysis suggested the polycrystalline samples are governed by a tricritical mean field model while nanocrystalline samples are governed by a mean field model. Curie temperatures values lower with increasing Ca substitution from 295 K for the parent compound to 201 K for x = 0.2. Bulk compounds exhibit high entropy change, with the highest value of 9.21 J/kgK for x = 0.2. Magnetocaloric effect and the possibility of tuning the Curie temperature by Ca substitution of Sr make the investigated bulk polycrystalline compounds promising for application in magnetic refrigeration. Nano-sized samples possess wider effective entropy change temperature (ΔTfwhm) and lower entropy changes of around 4 J/kgK which, however, puts in doubt their straightforward potential for applications as magnetocaloric materials.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770488

RESUMO

(Co0.4Zn0.4Ni0.2Fe2O4)α(SiO2)(100-α) samples obtained by embedding Co0.4Zn0.4Ni0.2Fe2O4 nanoparticles in SiO2 in various proportions were synthesized by sol-gel process and characterized using thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, and magnetic measurements. Poorly crystalline Co-Zn-Ni ferrite at low annealing temperatures (500 °C) and highly crystalline Co-Zn-Ni ferrite together with traces of crystalline Fe2SiO4 (800 °C) and SiO2 (tridymite and cristobalite) (1200 °C) were obtained. At 1200 °C, large spherical particles with size increasing with the ferrite content (36-120 nm) were obtained. Specific surface area increased with the SiO2 content and decreased with the annealing temperature above 500 °C. Magnetic properties were enhanced with the increase in ferrite content and annealing temperature.

5.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363235

RESUMO

Here, we report synthesis and investigations of bulk and nano-sized La(0.7-x)EuxBa0.3MnO3 (x ≤ 0.4) compounds. The study presents a comparison between the structural and magnetic properties of the nano- and polycrystalline manganites La(0.7-x)EuxBa0.3MnO3, which are potential magnetocaloric materials to be used in domestic magnetic refrigeration close to room temperature. The parent compound, La0.7Ba0.3MnO3, has Curie temperature TC = 340 K. The magnetocaloric effect is at its maximum around TC. To reduce this temperature below 300 K, we partially replaced the La ions with Eu ions. A solid-state reaction was used to prepare bulk polycrystalline materials, and a sol-gel method was used for the nanoparticles. X-ray diffraction was used for the structural characterization of the compounds. Transmission electron spectroscopy (TEM) evidenced nanoparticle sizes in the range of 40-80 nm. Iodometry and inductively coupled plasma optical emission spectrometry (ICP-OES) was used to investigate the oxygen content of the studied compounds. Critical exponents were calculated for all samples, with bulk samples being governed by tricritical mean field model and nanocrystalline samples governed by the 3D Heisenberg model. The bulk sample with x = 0.05 shows room temperature phase transition TC = 297 K, which decreases with increasing x for the other samples. All nano-sized compounds show lower TC values compared to the same bulk samples. The magnetocaloric effect in bulk samples revealed a greater magnetic entropy change in a relatively narrow temperature range, while nanoparticles show lower values, but in a temperature range several times larger. The relative cooling power for bulk and nano-sized samples exhibit approximately equal values for the same substitution level, and this fact can substantially contribute to applications in magnetic refrigeration near room temperature. By combining the magnetic properties of the nano- and polycrystalline manganites, better magnetocaloric materials can be obtained.

6.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328516

RESUMO

This paper presents the influence of Mn2+ substitution by Ni2+ on the structural, morphological and magnetic properties of Mn1-xNixFe2O4@SiO2 (x = 0, 0.25, 0.50, 0.75, 1.00) nanocomposites (NCs) obtained by a modified sol-gel method. The Fourier transform infrared spectra confirm the formation of a SiO2 matrix and ferrite, while the X-ray diffraction patterns show the presence of poorly crystalline ferrite at low annealing temperatures and highly crystalline mixed cubic spinel ferrite accompanied by secondary phases at high annealing temperatures. The lattice parameters gradually decrease, while the crystallite size, volume, and X-ray density of Mn1-xNixFe2O4@SiO2 NCs increase with increasing Ni content and follow Vegard's law. The saturation magnetization, remanent magnetization, squareness, magnetic moment per formula unit, and anisotropy constant increase, while the coercivity decreases with increasing Ni content. These parameters are larger for the samples with the same chemical formula, annealed at higher temperatures. The NCs with high Ni content show superparamagnetic-like behavior, while the NCs with high Mn content display paramagnetic behavior.


Assuntos
Magnetismo , Dióxido de Silício , Compostos Férricos , Fenômenos Magnéticos , Compostos de Manganês , Dióxido de Silício/química , Difração de Raios X
7.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947806

RESUMO

The structure, morphology and magnetic properties of (Ni0.6Mn0.4Fe2O4)α(SiO2)100-α (α = 0-100%) nanocomposites (NCs) produced by sol-gel synthesis were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). At low calcination temperatures (300 °C), poorly crystallized Ni0.6Mn0.4Fe2O4, while at high calcination temperatures, well-crystallized Ni0.6Mn0.4Fe2O4 was obtained along with α-Fe2O3, quartz, cristobalite or iron silicate secondary phase, depending on the Ni0.6Mn0.4Fe2O4 content in the NCs. The average crystallite size increases from 2.6 to 74.5 nm with the increase of calcination temperature and ferrite content embedded in the SiO2 matrix. The saturation magnetization (Ms) enhances from 2.5 to 80.5 emu/g, the remanent magnetization (MR) from 0.68 to 12.6 emu/g and the coercive field (HC) from 126 to 260 Oe with increasing of Ni0.6Mn0.4Fe2O4 content in the NCs. The SiO2 matrix has a diamagnetic behavior with a minor ferromagnetic fraction, Ni0.6Mn0.4Fe2O4 embedded in SiO2 matrix displays superparamagnetic behavior, while unembedded Ni0.6Mn0.4Fe2O4 has a high-quality ferromagnetic behavior.

8.
Nanomaterials (Basel) ; 11(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34578549

RESUMO

The effect of SiO2 embedding on the obtaining of single-phase ferrites, as well as on the structure, morphology and magnetic properties of (Zn0.6Mn0.4Fe2O4)δ(SiO2)100-δ (δ = 0-100%) nanoparticles (NPs) synthesized by sol-gel method was assessed. The phase composition and crystallite size were investigated by X-ray diffraction (XRD), the chemical transformations were monitored by Fourier transform infrared (FT-IR) spectroscopy, while the morphology of the NPs by transmission electron microscopy (TEM). The average crystallite size was 5.3-27.0 nm at 400 °C, 13.7-31.1 nm at 700 °C and 33.4-49.1 nm at 1100 °C. The evolution of the saturation magnetization, coercivity and magnetic anisotropy as a function of the crystallite sizes were studied by vibrating sample magnetometry (VSM) technique. As expected, the SiO2 matrix shows diamagnetic behavior accompanied by the accidentally contribution of a small percent of ferromagnetic impurities. The Zn0.6Mn0.4Fe2O4 embedded in SiO2 exhibits superparamagnetic-like behavior, whereas the unembedded Zn0.6Mn0.4Fe2O4 behaves like a high-quality ferrimagnet. The preparation route has a significant effect on the particle sizes, which strongly influences the magnetic behavior of the NPs.

9.
Nanomaterials (Basel) ; 10(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235778

RESUMO

This paper presents the synthesis of metal doped Co ferrites, M0.2Co0.8Fe2O4 (M = Cu2+, Ni2+, and Zn2+) embedded in SiO2 matrix by an innovative sol-gel route. The structural and morphological characterization provided information about the crystalline phases, crystallite size, and the shape of the prepared ferrites. The thermal study depicted the thermal decomposition and stability of the obtained ferrites. X-ray diffraction indicated nanocrystalline ferrites with spinel structure and the lack of crystalline phase impurities, while Fourier transform infrared spectroscopy revealed the presence of functional groups in precursors and ferrite powders. The lattice parameters showed a gradual increase indicating a uniform distribution of divalent metal ions in the Co ferrite lattice. The crystallite size, magnetic moment, super-exchange and deflection of magnetic domain were influenced by the dopant metal ion. The room temperature magnetization indicated a ferromagnetic behavior of the ferrites annealed at 1000 °C and a superparamagnetic behavior of the ferrites annealed at 700 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...