Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Immunol ; 24(10): 1671-1684, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709985

RESUMO

Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.


Assuntos
Infecções por Enterobacteriaceae , Imunidade Inata , Animais , Camundongos , Linfócitos , Estado Nutricional , Ferro , Receptores da Transferrina/genética , Mamíferos
2.
Sci Immunol ; 8(82): eabn0484, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115913

RESUMO

The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Intestinos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750252

RESUMO

BACKGROUND: Glioma-induced immune dysregulation of the hematopoietic system has been described in a limited number of studies. In this study, our group further demonstrates that gliomas interrupt the cellular differentiation programming and outcomes of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. HSPCs from glioma-bearing mice are reprogrammed and driven towards expansion of myeloid lineage precursors and myeloid-derived suppressor cells (MDSCs) in secondary lymphoid organs. However, we found this expansion is reversed by immunotherapy. Adoptive cellular therapy (ACT) has been demonstrably efficacious in multiple preclinical models of central nervous system (CNS) malignancies, and here we describe how glioma-induced dysfunction is reversed by this immunotherapeutic platform. METHODS: The impact of orthotopic KR158B-luc glioma on HSPCs was evaluated in an unbiased fashion using single cell RNAseq (scRNAseq) of lineage- cells and phenotypically using flow cytometry. Mature myeloid cell frequencies and function were also evaluated using flow cytometry. Finally, ACT containing total body irradiation, tumor RNA-pulsed dendritic cells, tumor-reactive T cells and HSPCs isolated from glioma-bearing or non-tumor-bearing mice were used to evaluate cell fate differentiation and survival. RESULTS: Using scRNAseq, we observed an altered HSPC landscape in glioma-bearing versus non-tumor-bearing mice . In addition, an expansion of myeloid lineage subsets, including granulocyte macrophage precursors (GMPs) and MDSCs, were observed in glioma-bearing mice relative to non-tumor-bearing controls. Furthermore, MDSCs from glioma-bearing mice demonstrated increased suppressive capacity toward tumor-specific T cells as compared with MDSCs from non-tumor-bearing hosts. Interestingly, treatment with ACT overcame these suppressive properties. When HSPCs from glioma-bearing mice were transferred in the context of ACT, we observed significant survival benefit and long-term cures in orthotopic glioma models compared with mice treated with ACT using non-glioma-bearing HSPCs.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioma , Camundongos , Animais , Linhagem Celular Tumoral , Glioma/patologia , Imunoterapia , Células-Tronco Hematopoéticas , Linfócitos T
4.
Cell Rep ; 42(1): 111963, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640340

RESUMO

The Aryl hydrocarbon receptor (Ahr) regulates the differentiation and function of CD4+ T cells; however, its cell-intrinsic role in CD8+ T cells remains elusive. Herein we show that Ahr acts as a promoter of resident memory CD8+ T cell (TRM) differentiation and function. Genetic ablation of Ahr in mouse CD8+ T cells leads to increased CD127-KLRG1+ short-lived effector cells and CD44+CD62L+ T central memory cells but reduced granzyme-B-producing CD69+CD103+ TRM cells. Genome-wide analyses reveal that Ahr suppresses the circulating while promoting the resident memory core gene program. A tumor resident polyfunctional CD8+ T cell population, revealed by single-cell RNA-seq, is diminished upon Ahr deletion, compromising anti-tumor immunity. Human intestinal intraepithelial CD8+ T cells also highly express AHR that regulates in vitro TRM differentiation and granzyme B production. Collectively, these data suggest that Ahr is an important cell-intrinsic factor for CD8+ T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Humanos , Animais , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Estudo de Associação Genômica Ampla , Diferenciação Celular
5.
Nat Microbiol ; 7(7): 1087-1099, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668113

RESUMO

Group 3 innate lymphoid cells (ILC3s) produce interleukin (IL)-22 and coordinate with other cells in the gut to mount productive host immunity against bacterial infection. However, the role of ILC3s in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, which causes foodborne enteritis in humans, remains elusive. Here we show that S. Typhimurium exploits ILC3-produced IL-22 to promote its infection in mice. Specifically, S. Typhimurium secretes flagellin through activation of the TLR5-MyD88-IL-23 signalling pathway in antigen presenting cells (APCs) to selectively enhance IL-22 production by ILC3s, but not T cells. Deletion of ILC3s but not T cells in mice leads to better control of S. Typhimurium infection. We also show that S. Typhimurium can directly invade ILC3s and cause caspase-1-mediated ILC3 pyroptosis independently of flagellin. Genetic ablation of Casp1 in mice leads to increased ILC3 survival and IL-22 production, and enhanced S. Typhimurium infection. Collectively, our data suggest a key host defence mechanism against S. Typhimurium infection via induction of ILC3 death to limit intracellular bacteria and reduce IL-22 production.


Assuntos
Imunidade Inata , Infecções por Salmonella , Animais , Caspase 1/metabolismo , Flagelina/metabolismo , Linfócitos/metabolismo , Camundongos , Piroptose , Infecções por Salmonella/metabolismo , Salmonella typhimurium/fisiologia
6.
Trends Immunol ; 43(3): 245-258, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131180

RESUMO

Emerging insights into aryl hydrocarbon receptor (Ahr) biology have revealed its key role in regulating mammalian host immunity and tissue homeostasis. Depending on the context, immune cells can play either a pro- or antitumor role in cancer. Ahr has classically been viewed as protumorigenic; however, given recent advances in our understanding of Ahr functions, especially in the immune system, this view requires reassessment. Moreover, given its cell type-specific activity, therapeutic exploitation of the Ahr pathway should be cautiously considered. We describe the function of Ahr in different immune cells, and connect with their roles in cancer immunology. In addition, we discuss clinical perspectives of how recent advances in our understanding of Ahr biology might be therapeutically applied to improve cancer outcomes.


Assuntos
Neoplasias , Receptores de Hidrocarboneto Arílico , Animais , Homeostase , Humanos , Mamíferos , Receptores de Hidrocarboneto Arílico/genética
7.
Metabolites ; 12(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35050190

RESUMO

Mass spectrometry is the most commonly used method for compound annotation in metabolomics. However, most mass spectra in untargeted assays cannot be annotated with specific compound structures because reference mass spectral libraries are far smaller than the complement of known molecules. Theoretically predicted mass spectra might be used as a substitute for experimental spectra especially for compounds that are not commercially available. For example, the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) method can predict 70 eV electron ionization mass spectra from any given input molecular structure. In this work, we investigated the accuracy of QCEIMS predictions of electron ionization (EI) mass spectra for 80 purine and pyrimidine derivatives in comparison to experimental data in the NIST 17 database. Similarity scores between every pair of predicted and experimental spectra revealed that 45% of the compounds were found as the correct top hit when QCEIMS predicted spectra were matched against the NIST17 library of >267,000 EI spectra, and 74% of the compounds were found within the top 10 hits. We then investigated the impact of matching, missing, and additional fragment ions in predicted EI mass spectra versus ion abundances in MS similarity scores. We further include detailed studies of fragmentation pathways such as retro Diels-Alder reactions to predict neutral losses of (iso)cyanic acid, hydrogen cyanide, or cyanamide in the mass spectra of purines and pyrimidines. We describe how trends in prediction accuracy correlate with the chemistry of the input compounds to better understand how mechanisms of QCEIMS predictions could be improved in future developments. We conclude that QCEIMS is useful for generating large-scale predicted mass spectral libraries for identification of compounds that are absent from experimental libraries and that are not commercially available.

8.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638685

RESUMO

Several pediatric mitochondrial disorders, including Leigh syndrome (LS), impact mitochondrial (mt) genetics, development, and metabolism, leading to complex pathologies and energy failure. The extent to which pathogenic mtDNA variants regulate disease severity in LS is currently not well understood. To better understand this relationship, we computed a glycolytic bioenergetics health index (BHI) for measuring mitochondrial dysfunction in LS patient fibroblast cells harboring varying percentages of pathogenic mutant mtDNA (T8993G, T9185C) exhibiting deficiency in complex V or complex I (T10158C, T12706C). A high percentage (>90%) of pathogenic mtDNA in cells affecting complex V and a low percentage (<39%) of pathogenic mtDNA in cells affecting complex I was quantified. Levels of defective enzyme activities of the electron transport chain correlated with the percentage of pathogenic mtDNA. Subsequent bioenergetics assays showed cell lines relied on both OXPHOS and glycolysis for meeting energy requirements. Results suggest that whereas the precise mechanism of LS has not been elucidated, a multi-pronged approach taking into consideration the specific pathogenic mtDNA variant, glycolytic BHI, and the composite BHI (average ratio of oxphos to glycolysis) can aid in better understanding the factors influencing disease severity in LS.


Assuntos
DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Glicólise , Doença de Leigh/metabolismo , Mutação , Fosforilação Oxidativa , Adulto , Criança , Pré-Escolar , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Doença de Leigh/genética , Masculino
9.
Nat Commun ; 12(1): 4462, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294718

RESUMO

RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Intestino Delgado/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Homeostase/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Organoides , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Subpopulações de Linfócitos T/citologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
10.
Sci Immunol ; 5(48)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532834

RESUMO

The orphan chemoattractant receptor GPR15 is important for homing T lymphocytes to the large intestine, thereby maintaining intestinal immune homeostasis. However, the molecular mechanisms underlying the regulation of GPR15 expression remain elusive. Here, we show a central role of the aryl hydrocarbon receptor (Ahr) in promoting GPR15 expression in both mice and human, thus gut homing of T lymphocytes. Mechanistically, Ahr directly binds to open chromatin regions of the Gpr15 locus to enhance its expression. Ahr transcriptional activity in directing GPR15 expression was modulated by two transcription factors, Foxp3 and RORγt, both of which are expressed preferentially by gut regulatory T cells (Tregs) in vivo. Specifically, Foxp3 interacted with Ahr and enhanced Ahr DNA binding at the Gpr15 locus, thereby promoting GPR15 expression. In contrast, RORγt plays an inhibitory role, at least in part, by competing with Ahr binding to the Gpr15 locus. Our findings thus demonstrate a key role for Ahr in regulating Treg intestinal homing under the steady state and during inflammation and the importance of Ahr-RORγt-Foxp3 axis in regulating gut homing receptor GPR15 expression by lymphocytes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Peptídeos/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética
11.
J Autoimmun ; 108: 102417, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32035746

RESUMO

IL-12 and IL-18 synergize to promote TH1 responses and have been implicated as accelerators of autoimmune pathogenesis in type 1 diabetes (T1D). We investigated the influence of these cytokines on immune cells involved in human T1D progression: natural killer (NK) cells, regulatory T cells (Tregs), and cytotoxic T lymphocytes (CTL). NK cells from T1D patients exhibited higher surface CD226 versus controls and lower CD25 compared to first-degree relatives and controls. Changes in NK cell phenotype towards terminal differentiation were associated with cytomegalovirus (CMV) seropositivity, while possession of IL18RAP, IFIH1, and IL2RA T1D-risk variants impacted NK cell activation as evaluated by immuno-expression quantitative trait loci (eQTL) analyses. IL-12 and IL-18 stimulated NK cells from healthy donors exhibited enhanced specific killing of myelogenous K562 target cells. Moreover, activated NK cells increased expression of NKG2A, NKG2D, CD226, TIGIT and CD25, which enabled competition for IL-2 upon co-culture with Tregs, resulting in Treg downregulation of FOXP3, production of IFNγ, and loss of suppressive function. We generated islet-autoreactive CTL "avatars", which upon exposure to IL-12 and IL-18, upregulated IFNγ and Granzyme-B leading to increased lymphocytotoxicity of a human ß-cell line in vitro. These results support a model for T1D pathogenesis wherein IL-12 and IL-18 synergistically enhance CTL and NK cell cytotoxic activity and disrupt immunoregulation by Tregs.


Assuntos
Imunidade Inata , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adolescente , Adulto , Biomarcadores , Células Cultivadas , Criança , Citocinas/metabolismo , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Inflamação/metabolismo , Inflamação/patologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Locos de Características Quantitativas , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Adulto Jovem
12.
Am J Physiol Cell Physiol ; 317(5): C910-C921, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411917

RESUMO

Activation of calpain 1 (CPN1) and calpain 2 (CPN2) contributes to cardiac injury during ischemia (ISC) and reperfusion (REP). Complex I activity is decreased in heart mitochondria following ISC-REP. CPN1 and CPN2 are ubiquitous calpains that exist in both cytosol (cs)-CPN1 and 2 and mitochondria (mit)-CPN1 and 2. Recent work shows that the complex I subunit (NDUFS7) is a potential substrate of the mit-CPN1. We asked whether ISC-REP led to decreased complex I activity via proteolysis of the NDUFS7 subunit via activation of mit-CPN1 and -2. Activation of cs-CPN1 and -2 decreases mitophagy in hepatocytes following ISC-REP. We asked whether activation of cs-CPN1 and -2 impaired mitophagy in the heart following ISC-REP. Buffer-perfused rat hearts underwent 25 min of global ISC and 30 min of REP. MDL-28170 (MDL; 10 µM) was used to inhibit CPN1 and -2. Cytosol, subsarcolemmal mitochondria (SSM), and interfibrillar mitochondria (IFM) were isolated at the end of heart perfusion. Cardiac ISC-REP led to decreased complex I activity with a decrease in the content of NDUFS7 in both SSM and IFM. ISC-REP also resulted in a decrease in cytosolic beclin-1 content, a key component of the autophagy pathway required to form autophagosomes. MDL treatment protected the contents of cytosolic beclin-1 and mitochondrial NDUFS7 in hearts following ISC-REP. These results support that activation of both cytosolic and mitochondrial calpains impairs mitochondria during cardiac ISC-REP. Mitochondria-localized calpains impair complex I via cleavage of a key subunit. Activation of cytosolic calpains contributes to mitochondrial dysfunction by impairing removal of the impaired mitochondria through depletion of a key component of the mitophagy process.


Assuntos
Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Mitofagia/fisiologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Animais , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
13.
Cell Rep ; 28(1): 159-171.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269437

RESUMO

Regulatory T cells (Tregs) are pivotal for immune suppression. Cellular metabolism is important for Treg homeostasis and function. However, the exact role of mitochondrial respiration in Tregs remains elusive. Mitochondrial transcription factor A (Tfam) is essential for mitochondrial respiration and controls mitochondrial DNA replication, transcription, and packaging. Here, we show that genetic ablation of Tfam in Tregs impairs Treg maintenance in non-lymphoid tissues in the steady state and in tumors. Tfam-deficient Tregs have reduced proliferation and Foxp3 expression upon glucose deprivation in vitro. Tfam deficiency preferentially affects gene activation in Tregs through regulation of DNA methylation, with enhanced methylation in the TSDR of the Foxp3 locus. Deletion of Tfam in Tregs affects Treg homing and stability, resulting in tissue inflammation in colitis, but enhances tumor rejection. Thus, our work reveals a critical role of Tfam-mediated mitochondrial respiration in Tregs to regulate inflammation and anti-tumor immunity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Melanoma Experimental/imunologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/genética , Cromatina/metabolismo , Colite/genética , Colite/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead/genética , Glicólise , Inflamação/genética , Inflamação/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , RNA-Seq , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética , Transcriptoma/genética , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...