Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 12(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36199707

RESUMO

C. elegans shows robust and reproducible behavioral responses to oxygen. Specifically, worms prefer O 2 levels of 5-10% and avoid too high or too low O 2 . Their O 2 preference is not fixed but shows plasticity depending on experience, context, or genetic background. We recently showed that this experience-dependent plasticity declines with age, providing a useful behavioral readout for studying the mechanisms of age-related decline of neural plasticity. Here, we describe a technique to visualize behavioral O 2 preference and its plasticity in C. elegans , by creating spatial gradients of [O 2 ] in a microfluidic polydimethylsiloxane (PDMS) chamber and recording the resulting spatial distribution of the animals.

2.
Sci Adv ; 8(5): eabi5884, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108053

RESUMO

Animal genomes show networks of deeply conserved gene linkages whose phylogenetic scope and chromosomal context remain unclear. Here, we report chromosome-scale conservation of synteny among bilaterians, cnidarians, and sponges and use comparative analysis to reconstruct ancestral chromosomes across major animal groups. Comparisons among diverse metazoans reveal the processes of chromosome evolution that produced contemporary karyotypes from their Precambrian progenitors. On the basis of these findings, we introduce a simple algebraic representation of chromosomal change and use it to establish a unified systematic framework for metazoan chromosome evolution. We find that fusion-with-mixing, a previously unappreciated mode of chromosome change, has played a central role. We find that relicts of several metazoan chromosomal units are preserved in unicellular eukaryotes. These conserved pre-metazoan linkages include the chromosomal unit that encodes the most diverse set of metazoan homeobox genes, suggesting a candidate genomic context for the early diversification of this key gene family.

3.
Nucleic Acids Res ; 48(22): e132, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152076

RESUMO

Despite remarkable progress in DNA sequencing technologies there remains a trade-off between short-read platforms, having limited ability to sequence homopolymers, repeated motifs or long-range structural variation, and long-read platforms, which tend to have lower accuracy and/or throughput. Moreover, current methods do not allow direct readout of epigenetic modifications from a single read. With the aim of addressing these limitations, we have developed an optical electrowetting sequencing platform that uses step-wise nucleotide triphosphate (dNTP) release, capture and detection in microdroplets from single DNA molecules. Each microdroplet serves as a reaction vessel that identifies an individual dNTP based on a robust fluorescence signal, with the detection chemistry extended to enable detection of 5-methylcytosine. Our platform uses small reagent volumes and inexpensive equipment, paving the way to cost-effective single-molecule DNA sequencing, capable of handling widely varying GC-bias, and demonstrating direct detection of epigenetic modifications.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Imagem Individual de Molécula , Composição de Bases/genética , Humanos , Nanotecnologia , Nucleotídeos/genética
4.
BMC Infect Dis ; 20(1): 441, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571220

RESUMO

BACKGROUND: PCRctic is an innovative assay based on 16S rDNA PCR technology that has been designed to detect a single intact bacterium in a specimen of cerebro-spinal fluid (CSF). The assay's potential for accurate, fast and inexpensive discrimination of bacteria-free CSF makes it an ideal adjunct for confident exclusion of bacterial meningitis in newborn babies where the negative predictive value of bacterial culture is poor. This study aimed to stress-test and optimize PCRctic in the "field conditions" to attain a clinically useful level of specificity. METHODS: The specificity of PCRctic was evaluated in CSF obtained from newborn babies investigated for meningitis on a tertiary neonatal unit. Following an interim analysis, the method of skin antisepsis was changed to increase bactericidal effect, and snap-top tubes (Eppendorf™) replaced standard universal containers for collection of CSF to reduce environmental contamination. RESULTS: The assay's specificity was 90.5% in CSF collected into the snap-top tubes - up from 60% in CSF in the universal containers. The method of skin antisepsis had no effect on the specificity. All CSF cultures were negative and no clinical cases of neonatal bacterial meningitis occurred during the study. CONCLUSIONS: A simple and inexpensive optimization of CSF collection resulted in a high specificity output. The low prevalence of neonatal bacterial meningitis means that a large multi-centre study will be required to validate the assay's sensitivity and its negative predictive value.


Assuntos
Líquido Cefalorraquidiano/microbiologia , Meningites Bacterianas/microbiologia , Reação em Cadeia da Polimerase/métodos , Bactérias/genética , DNA Ribossômico/genética , Estudos de Viabilidade , Humanos , Recém-Nascido , Doenças do Recém-Nascido/microbiologia , Meningites Bacterianas/diagnóstico , Sensibilidade e Especificidade
5.
Nucleic Acids Res ; 47(17): e101, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31318971

RESUMO

A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.


Assuntos
Desoxirribonucleotídeos/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribonucleosídeos/química , Desoxirribonucleotídeos/química , Limite de Detecção , Microscopia de Fluorescência , Oligodesoxirribonucleotídeos/biossíntese , Oligodesoxirribonucleotídeos/química , Sensibilidade e Especificidade
6.
PLoS One ; 11(12): e0167958, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977777

RESUMO

Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development.


Assuntos
Flores/genética , Magnoliopsida/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
7.
Elife ; 52016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892853

RESUMO

The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.


Assuntos
Rearranjo Gênico , Genoma de Protozoário , Tetrahymena thermophila/genética , Análise de Sequência de DNA
8.
Plant Genome ; 8(3): eplantgenome2015.04.0021, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33228273

RESUMO

The C-value paradox remains incompletely resolved after >40 yr and is exemplified by 2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae genus Genlisea, displaying a 25-fold range of genome sizes, is a promising subject to study mechanisms and consequences of evolutionary genome size variation. Applying genomic, phylogenetic, and cytogenetic approaches, we uncovered bidirectional genome size evolution within the genus Genlisea. The Genlisea nigrocaulis Steyerm. genome (86 Mbp) has probably shrunk by retroelement silencing and deletion-biased double-strand break (DSB) repair, from an ancestral size of 400 to 800 Mbp to become one of the smallest among flowering plants. The G. hispidula Stapf genome has expanded by whole-genome duplication (WGD) and retrotransposition to 1550 Mbp. Genlisea hispidula became allotetraploid after the split from the G. nigrocaulis clade ∼29 Ma. Genlisea pygmaea A. St.-Hil. (179 Mbp), a close relative of G. nigrocaulis, proved to be a recent (auto)tetraploid. Our analyses suggest a common ancestor of the genus Genlisea with an intermediate 1C value (400-800 Mbp) and subsequent rapid genome size evolution in opposite directions. Many abundant repeats of the larger genome are absent in the smaller, casting doubt on their functionality for the organism, while recurrent WGD seems to safeguard against the loss of essential elements in the face of genome shrinkage. We cannot identify any consistent differences in habitat or life strategy that correlate with genome size changes, raising the possibility that these changes may be selectively neutral.

9.
Genome Res ; 24(10): 1676-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25015382

RESUMO

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.


Assuntos
Eimeria/genética , Genoma de Protozoário , Proteínas de Protozoários/genética , Animais , Linhagem Celular , Galinhas , Mapeamento Cromossômico , Coccidiose/parasitologia , Coccidiose/veterinária , Eimeria/classificação , Perfilação da Expressão Gênica , Filogenia , Doenças das Aves Domésticas/parasitologia , Proteoma , Sintenia
10.
Int J Exp Pathol ; 94(3): 203-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23594372

RESUMO

Copy number alterations are frequently found in colorectal cancer (CRC), and recurrent gains or losses are likely to correspond to regions harbouring genes that promote or impede carcinogenesis respectively. Gain of chromosome 13q is common in CRC but, because the region of gain is frequently large, identification of the driver gene(s) has hitherto proved difficult. We used array comparative genomic hybridization to analyse 124 primary CRCs, demonstrating that 13q34 is a region of gain in 35% of CRCs, with focal gains in 4% and amplification in a further 1.6% of cases. To reduce the number of potential driver genes to consider, it was necessary to refine the boundaries of the narrowest copy number changes seen in this series and hence define the minimal copy region (MCR). This was performed using molecular copy-number counting, identifying IRS2 as the only complete gene, and therefore the likely driver oncogene, within the refined MCR. Analysis of available colorectal neoplasia data sets confirmed IRS2 gene gain as a common event. Furthermore, IRS2 protein and mRNA expression in colorectal neoplasia was assessed and was positively correlated with progression from normal through adenoma to carcinoma. In functional in vitro experiments, we demonstrate that deregulated expression of IRS2 activates the oncogenic PI3 kinase pathway and increases cell adhesion, both characteristics of invasive CRC cells. Together, these data identify IRS2 as a likely driver oncogene in the prevalent 13q34 region of gain/amplification and suggest that IRS2 over-expression may provide an additional mechanism of PI3 kinase pathway activation in CRC.


Assuntos
Adenocarcinoma/genética , Cromossomos Humanos Par 13 , Neoplasias Colorretais/genética , Dosagem de Genes/genética , Proteínas Substratos do Receptor de Insulina/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Pólipos do Colo/genética , Pólipos do Colo/metabolismo , Pólipos do Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Instabilidade Genômica/genética , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Células Tumorais Cultivadas
11.
Genes Chromosomes Cancer ; 52(4): 402-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23341332

RESUMO

Chromosomal translocations and other abnormalities are central to the initiation of cancer in all cell types. Understanding the mechanism is therefore important to evaluate the evolution of cancer from the cancer initiating events to overt disease. Recent work has concentrated on model systems to develop an understanding of the molecular mechanisms of translocations but naturally occurring events are more ideal case studies since biological selection is absent from model systems. In solid tumours, nonreciprocal translocations are most commonly found, and accordingly we have investigated the recurrent nonreciprocal t(3;5) chromosomal translocations in renal carcinoma to better understand the mechanism of these naturally occurring translocations in cancer. Unexpectedly, the junctions of these translocations can be associated with site-specific, intrachromosomal inversion involving at least two double strand breaks (DSB) in cis and rejoining by nonhomologous end joining or micro-homology end joining. However, these translocations are not necessarily associated with transcribed regions questioning accessibility per se in controlling these events. In addition, intrachromosomal deletions also occur. We conclude these naturally occurring, nonreciprocal t(3;5) chromosomal translocations occur after complex and multiple unresolved intrachromosomal DSBs leading to aberrant joining with concurrent interstitial inversion and that clonal selection of cells is the critical element in cancer development emerging from a plethora of DSBs that may not always be pathogenic.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Transcrição Gênica , Translocação Genética , Sequência de Bases , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Inversão Cromossômica , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 5/genética , Variações do Número de Cópias de DNA , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Dados de Sequência Molecular
12.
Methods ; 59(1): 101-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22926236

RESUMO

The efficient delivery of personalized medicine is a key goal of healthcare over the next decade. It is likely that PCR strategies will play an important role in the delivery of this goal. Digital PCR has certain advantages over more traditional PCR protocols. In this article we will discuss the current status of digital PCR, highlighting its advantages and focusing on how it can be utilized in biomarker development and analysis, including the use of individualized biomarkers. We will explore recent developments in this field including examples of how digital PCR may integrate with next generation sequencing to deliver truly personalized medicine.


Assuntos
Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase/métodos , Biomarcadores/metabolismo , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Farmacogenética , Medicina de Precisão , Sensibilidade e Especificidade , Análise de Sequência de DNA
13.
BMC Genomics ; 13: 389, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22889016

RESUMO

BACKGROUND: Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. RESULTS: A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute) were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P) regions alternating with repeat-rich (R) regions. Evidence of copy-number variation between strains was also uncovered. CONCLUSIONS: This paper describes the application of a whole genome mapping method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments) between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.


Assuntos
Eimeria tenella/genética , Genoma de Protozoário , Cromossomos/genética , Cromossomos/metabolismo , Mapeamento de Sequências Contíguas , Variações do Número de Cópias de DNA , Ligação Genética , Marcadores Genéticos
14.
Mol Ecol ; 21(4): 1005-18, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22221514

RESUMO

In northwestern Iberia, two largely allopatric Lacerta lepida mitochondrial lineages occur, L5 occurring to the south of Douro River and L3 to the north, with a zone of putative secondary contact in the region of the Douro River valley. Cytochrome b sequence chromatograms with polymorphisms at nucleotide sites diagnostic for the two lineages were detected in individuals in the region of the Douro River and further north within the range of L3. We show that these polymorphisms are caused by the presence of four different numts (I-IV) co-occurring with the L3 genome, together with low levels of heteroplasmy. Two of the numts (I and II) are similar to the mitochondrial genome of L5 but are quite divergent from the mitochondrial genome of L3 where they occur. We show that these numts are derived from the mitochondrial genome of L5 and were incorporated in L3 through hybridization at the time of secondary contact between the lineages. The additional incidence of these numts to the north of the putative contact zone is consistent with an earlier postglacial northward range expansion of L5, preceding that of L3. We show that genetic exchange between the lineages responsible for the origin of these numts in L3 after secondary contact occurred prior to, or coincident with, the northward expansion of L3. This study shows that, in the context of phylogeographic analysis, numts can provide evidence for past demographic events and can be useful tools for the reconstruction of complex evolutionary histories.


Assuntos
Genética Populacional , Genoma Mitocondrial , Lagartos/genética , Filogeografia , Animais , Citocromos b/genética , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Haplótipos , Dados de Sequência Molecular , Polimorfismo Genético , Dinâmica Populacional , Portugal , Análise de Sequência de DNA
15.
Nucleic Acids Res ; 39(13): e85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525129

RESUMO

Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2 kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome.


Assuntos
Aberrações Cromossômicas , Mapeamento Cromossômico/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Deleção Cromossômica , Variações do Número de Cópias de DNA , Ligação Genética , Genoma Humano , Humanos , Translocação Genética
16.
J Pathol ; 224(2): 153-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21506132

RESUMO

The term 'field cancerization' is used to describe an epithelial surface that has a propensity to develop cancerous lesions, and in the case of the aerodigestive tract this is often as a result of chronic exposure to carcinogens in cigarette smoke 1, 2. The clinical endpoint is the development of multiple tumours, either simultaneously or sequentially in the same epithelial surface. The mechanisms underlying this process remain unclear; one possible explanation is that the epithelium is colonized by a clonal population of cells that are at increased risk of progression to cancer. We now address this possibility in a short case series, using individual genomic events as molecular biomarkers of clonality. In squamous lung cancer the most common genomic aberration is 3q amplification. We use a digital PCR technique to assess the clonal relationships between multiple biopsies in a longitudinal bronchoscopic study, using amplicon boundaries as markers of clonality. We demonstrate that clonality can readily be defined by these analyses and confirm that field cancerization occurs at a pre-invasive stage and that pre-invasive lesions and subsequent cancers are clonally related. We show that while the amplicon boundaries can be shared between different biopsies, the degree of 3q amplification and the internal structure of the 3q amplicon varies from lesion to lesion. Finally, in this small cohort, the degree of 3q amplification corresponds to clinical progression.


Assuntos
Brônquios/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Lesões Pré-Cancerosas/patologia , Adulto , Biópsia , Carcinoma de Células Escamosas/genética , Progressão da Doença , Feminino , Genômica/métodos , Humanos , Estudos Longitudinais , Neoplasias Pulmonares/genética , Microdissecção/métodos , Lesões Pré-Cancerosas/genética
17.
Am J Respir Crit Care Med ; 182(1): 83-91, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20299530

RESUMO

RATIONALE: Amplification of distal 3q is the most common genomic aberration in squamous lung cancer (SQC). SQC develops in a multistage progression from normal bronchial epithelium through dysplasia to invasive disease. Identifying the key driver events in the early pathogenesis of SQC will facilitate the search for predictive molecular biomarkers and the identification of novel molecular targets for chemoprevention and therapeutic strategies. For technical reasons, previous attempts to analyze 3q amplification in preinvasive lesions have focused on small numbers of predetermined candidate loci rather than an unbiased survey of copy-number variation. OBJECTIVES: To perform a detailed analysis of the 3q amplicon in bronchial dysplasia of different histological grades. METHODS: We use molecular copy-number counting (MCC) to analyze the structure of chromosome 3 in 19 preinvasive bronchial biopsy specimens from 15 patients and sequential biopsy specimens from 3 individuals. MEASUREMENTS AND MAIN RESULTS: We demonstrate that no low-grade lesions, but all high-grade lesions, have 3q amplification. None of seven low-grade lesions progressed clinically, whereas 8 of 10 patients with high-grade disease progressed to cancer. We identify a minimum commonly amplified region on chromosome 3 consisting of 17 genes, including 2 known oncogenes, SOX2 and PIK3CA. We confirm that both genes are amplified in all high-grade dysplastic lesions tested. We further demonstrate, in three individuals, that the clinical progression of high-grade preinvasive disease is associated with incremental amplification of SOX2, suggesting this promotes malignant progression. CONCLUSIONS: These findings demonstrate progressive 3q amplification in the evolution of preinvasive SQC and implicate SOX2 as a key target of this dynamic process.


Assuntos
Cromossomos Humanos Par 3/genética , Amplificação de Genes/fisiologia , Neoplasias de Células Escamosas/genética , Lesões Pré-Cancerosas/genética , Fatores de Transcrição SOXB1/genética , Idoso , Neoplasias Brônquicas/genética , Neoplasias Brônquicas/patologia , Neoplasias Brônquicas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica , Neoplasias de Células Escamosas/fisiopatologia , Lesões Pré-Cancerosas/classificação , Lesões Pré-Cancerosas/patologia
18.
J Am Chem Soc ; 132(14): 5096-104, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20235594

RESUMO

DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.


Assuntos
Corantes/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , DNA/química , Modelos Moleculares , Nucleotídeos/química , Nucleotídeos/metabolismo
19.
PLoS One ; 5(2): e9089, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20161702

RESUMO

Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical "contig" maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning approximately 10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual "BAC-HAPPY-mapping" to convert BAC landing data into BAC linkage contigs is possible.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos/genética , DNA de Plantas/genética , Cromossomos de Plantas/genética , Genoma de Planta , Biblioteca Genômica , Sitios de Sequências Rotuladas
20.
J Pathol ; 220(2): 297-306, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19927313

RESUMO

The term 'single-molecule genomics' (SMG) describes a group of molecular methods in which single molecules are detected or sequenced. The focus on the analysis of individual molecules distinguishes these techniques from more traditional methods, in which template DNA is cloned or PCR-amplified prior to analysis. Although technically challenging, the analysis of single molecules has the potential to play a major role in the delivery of truly personalized medicine. The two main subgroups of SMG methods are single-molecule digital PCR and single-molecule sequencing. Single-molecule PCR has a number of advantages over competing technologies, including improved detection of rare genetic variants and more precise analysis of copy-number variation, and is more easily adapted to the often small amount of material that is available in clinical samples. Single-molecule sequencing refers to a number of different methods that are mainly still in development but have the potential to make a huge impact on personalized medicine in the future.


Assuntos
Genômica/métodos , Medicina de Precisão/métodos , Mapeamento Cromossômico/métodos , Metilação de DNA , Análise Mutacional de DNA/métodos , Humanos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...