Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20286, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575809

RESUMO

Tocochromanols (vitamin E) are an essential part of the human diet. Plant products, including maize (Zea mays L.) grain, are the major dietary source of tocochromanols; therefore, breeding maize with higher vitamin content (biofortification) could improve human nutrition. Incorporating exotic germplasm in maize breeding for trait improvement including biofortification is a promising approach and an important research topic. However, information about genomic prediction of exotic-derived lines using available training data from adapted germplasm is limited. In this study, genomic prediction was systematically investigated for nine tocochromanol traits within both an adapted (Ames Diversity Panel [AP]) and an exotic-derived (Backcrossed Germplasm Enhancement of Maize [BGEM]) maize population. Although prediction accuracies up to 0.79 were achieved using genomic best linear unbiased prediction (gBLUP) when predicting within each population, genomic prediction of BGEM based on an AP training set resulted in low prediction accuracies. Optimal training population (OTP) design methods fast and unique representative subset selection (FURS), maximization of connectedness and diversity (MaxCD), and partitioning around medoids (PAM) were adapted for inbreds and, along with the methods mean coefficient of determination (CDmean) and mean prediction error variance (PEVmean), often improved prediction accuracies compared with random training sets of the same size. When applied to the combined population, OTP designs enabled successful prediction of the rest of the exotic-derived population. Our findings highlight the importance of leveraging genotype data in training set design to efficiently incorporate new exotic germplasm into a plant breeding program.

2.
Plant Genome ; : e20276, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321716

RESUMO

With an essential role in human health, tocochromanols are mostly obtained by consuming seed oils; however, the vitamin E content of the most abundant tocochromanols in maize (Zea mays L.) grain is low. Several large-effect genes with cis-acting variants affecting messenger RNA (mRNA) expression are mostly responsible for tocochromanol variation in maize grain, with other relevant associated quantitative trait loci (QTL) yet to be fully resolved. Leveraging existing genomic and transcriptomic information for maize inbreds could improve prediction when selecting for higher vitamin E content. Here, we first evaluated a multikernel genomic best linear unbiased prediction (MK-GBLUP) approach for modeling known QTL in the prediction of nine tocochromanol grain phenotypes (12-21 QTL per trait) within and between two panels of 1,462 and 242 maize inbred lines. On average, MK-GBLUP models improved predictive abilities by 7.0-13.6% when compared with GBLUP. In a second approach with a subset of 545 lines from the larger panel, the highest average improvement in predictive ability relative to GBLUP was achieved with a multi-trait GBLUP model (15.4%) that had a tocochromanol phenotype and transcript abundances in developing grain for a few large-effect candidate causal genes (1-3 genes per trait) as multiple response variables. Taken together, our study illustrates the enhancement of prediction models when informed by existing biological knowledge pertaining to QTL and candidate causal genes.

3.
Genetics ; 221(4)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35666198

RESUMO

Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.


Assuntos
Grão Comestível , Zea mays , Antioxidantes/metabolismo , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Humanos , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Tocoferóis/metabolismo , Vitamina E/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(23): e2113488119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639691

RESUMO

The tocopherol biosynthetic pathway, encoded by VTE genes 1 through 6, is highly conserved in plants but most large effect quantitative trait loci for seed total tocopherols (totalT) lack VTE genes, indicating other activities are involved. A genome-wide association study of Arabidopsis seed tocopherols showed five of seven significant intervals lacked VTE genes, including the most significant, which mapped to an uncharacterized, seed-specific, envelope-localized, alpha/beta hydrolase with esterase activity, designated AtVTE7. Atvte7 null mutants decreased seed totalT 55% while a leaky allele of the maize ortholog, ZmVTE7, decreased kernel and leaf totalT 38% and 49%, respectively. Overexpressing AtVTE7 or ZmVTE7 partially or fully complemented the Atvte7 seed phenotype and increased leaf totalT by 3.6- and 6.9-fold, respectively. VTE7 has the characteristics of an esterase postulated to provide phytol from chlorophyll degradation for tocopherol synthesis, but bulk chlorophyll levels were unaffected in vte7 mutants and overexpressing lines. Instead, levels of specific chlorophyll biosynthetic intermediates containing partially reduced side chains were impacted and strongly correlated with totalT. These intermediates are generated by a membrane-associated biosynthetic complex containing protochlorophyllide reductase, chlorophyll synthase, geranylgeranyl reductase (GGR) and light harvesting-like 3 protein, all of which are required for both chlorophyll and tocopherol biosynthesis. We propose a model where VTE7 releases prenyl alcohols from chlorophyll biosynthetic intermediates, which are then converted to the corresponding diphosphates for tocopherol biosynthesis.


Assuntos
Arabidopsis , Hidrolases , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/fisiologia , Estudo de Associação Genômica Ampla , Hidrolases/metabolismo , Fitol/metabolismo , Melhoramento Vegetal , Plantas/genética , Plantas/metabolismo , Tocoferóis/metabolismo , Vitamina E/metabolismo
5.
Plant Methods ; 16: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32968427

RESUMO

BACKGROUND: Tocochromanols are a group of lipid-soluble antioxidants produced by all plants and include the tocopherols, which are ubiquitous in the plant kingdom, and the biosynthetically-related compounds tocotrienols, which along with tocopherols commonly occur in seed of monocots. Most tocochromanols have some level of vitamin E activity, with α-tocopherol being the highest, and as such are essential nutrients in the human diet. Tocochromanols are particularly abundant in seeds and are critical for maintaining seed longevity and proper germination and as seed oils are a major component of the human diet, they are an important source of dietary vitamin E. In vegetative tissues, tocochromanols are important components in plant responses to stressful environments and can accumulate to high levels in response to various stresses including high light, heat, and dark. RESULTS: We report a robust, high throughput extraction and HPLC analysis method to quantify the levels of tocopherols and tocotrienols in leaves and seeds of plants, using Arabidopsis and maize tissues as examples. CONCLUSION: The described method provides a rapid, high-throughput, cost-effective approach to quantifying the composition and content of tocopherols, and if needed simultaneously tocotrienols, in vegetative tissues and seeds. Optimized extraction methods are described for the two tissue types and have been used to study tocochromanol (vitamin E) natural variation in seed of large Arabidopsis and maize diversity panels, to assess gene function in T-DNA and Mu-tagged populations of Arabidopsis and maize, respectfully, and study the impact of environmental stresses, including high light stress, heat stress, and dark on tocopherols content and composition of vegetative tissue.

6.
Parasit Vectors ; 11(1): 606, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482239

RESUMO

BACKGROUND: Decisions on when vector control can be withdrawn after malaria is eliminated depend on the receptivity or potential of an area to support vector populations. To guide malaria control and elimination programmes, the potential of biting rates, sporozoite rates, entomological inoculation rates and parity rates to estimate malaria receptivity and transmission were compared within and among geographically localised villages of active transmission in the Western Province of the Solomon Islands. RESULTS: Malaria transmission and transmission potential was heterogeneous in both time and space both among and within villages as defined by anopheline species composition and biting densities. Biting rates during the peak biting period (from 18:00 to 00:00 h) of the primary vector, Anopheles farauti, ranged from less than 0.3 bites per person per half night in low receptivity villages to 26 bites per person in highly receptive villages. Within villages, sites with high anopheline biting rates were significantly clustered. Sporozoite rates provided evidence for continued transmission of Plasmodium falciparum, P. vivax and P. ovale by An. farauti and for incriminating An. hinesorum, as a minor vector, but were unreliable as indicators of transmission intensity. CONCLUSIONS: In the low transmission area studied, sporozoite, entomological inoculation and parity rates could not be measured with the precision required to provide guidance to malaria programmes. Receptivity and potential transmission risk may be most reliably estimated by the vector biting rate. These results support the meaningful design of operational research programmes to ensure that resources are focused on providing information that can be utilised by malaria control programmes to best understand both transmission, transmission risk and receptivity across different areas.


Assuntos
Anopheles/fisiologia , Erradicação de Doenças/métodos , Mordeduras e Picadas de Insetos , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Animais , Anopheles/parasitologia , Feminino , Humanos , Estudos Longitudinais , Malária/epidemiologia , Malária/prevenção & controle , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Melanesia/epidemiologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/fisiologia , Estações do Ano , Esporozoítos/isolamento & purificação
7.
Malar J ; 16(1): 230, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569159

RESUMO

BACKGROUND: Molecular tools for detecting malaria-infected mosquitoes with improved practicality, sensitivity and specificity, and high-throughput are required. A common PCR technique used to detect mosquitoes infected with Plasmodium spp. is a nested PCR assay based on the 18s-rRNA gene. However, this technique has several technical limitations, is laborious and time consuming. METHODS: In this study, a PCR-based on the Plasmodium cytochrome oxidase I (COX-I) gene was compared with the 18s-rRNA nested PCR using serial dilutions (330-0.0012 pg) of DNA from Plasmodium vivax, Plasmodium falciparum and Plasmodium knowlesi and with DNA from 48 positive and negative Kenyan mosquitoes (previously detected by using both ELISA and PCR). This assay for Plasmodium spp. DNA detection using the fast COX-I PCR assay was then performed individually on 2122 field collected mosquitoes (from the Solomon Islands) in which DNA was extracted from head and thorax. RESULTS: The fast COX-I PCR assay took 1 h to run and consistently detected as low as to 0.043 pg of parasite DNA (equivalent to two parasites) in a single PCR, while analyses with the 18s-rRNA nested PCR required 4 h to complete with a consistent detection threshold of 1.5 pg of DNA. Both assays produced concordant results when applied to the 48 Kenyan control samples with known Plasmodium spp. infection status. The fast COX-I PCR identified 23/2122 Plasmodium-infected mosquitoes from the Solomon Islands. CONCLUSIONS: This new COX-I PCR adapted for a single PCR reaction is a faster, simpler, cheaper, more sensitive technique amenable to high-throughput analyses for Plasmodium DNA detection in mosquitoes and is comparable to the 18s-rRNA nested PCR. The improved sensitivity seen with the fast COX-I PCR will improve the accuracy of mosquito infection rate determination.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium knowlesi/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/análise , Animais , Anopheles/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/análise , Feminino , Melanesia , Plasmodium falciparum/enzimologia , Plasmodium knowlesi/enzimologia , Plasmodium vivax/enzimologia , RNA Ribossômico 18S/análise , Sensibilidade e Especificidade , Esporozoítos/enzimologia , Esporozoítos/isolamento & purificação
8.
Plant Physiol ; 173(1): 872-886, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872244

RESUMO

Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Aminoácidos/genética , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Sementes/genética , Sementes/metabolismo
9.
Malar J ; 15: 128, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26928594

RESUMO

BACKGROUND: Nested PCRs based on the Plasmodium 18s-rRNA gene have been extensively used for human malaria diagnosis. However, they are not practical when large quantities of samples need to be processed, further there have been challenges in the performance and when interpreting results, especially when submicroscopic infections are analysed. Here the use of "direct PCR" was investigated with the aim of improving diagnosis in the malaria elimination era. METHODS: The performance of the Plasmodium cytochrome oxidase III gene (COX-III) based novel malaria detection strategies (direct nested PCR and direct single PCR) were compared using a 18s-rRNA direct nested PCR as a reference tool. Evaluations were based on sensitivity, specificity and the ability to detect mixed infections using control blood spot samples and field collected blood samples with final species diagnosis confirmation by sequencing. RESULTS: The COX-III direct PCR (limit of detection: 0.6-2 parasites/µL) was more sensitive than the 18s-rRNA direct nested PCR (limit of detection: 2-10 parasites/µL). The COX-III direct PCR identified all 21 positive controls (no mixed infections detected) while the 18s-rRNA direct nested PCR identified 18/21 (including four mixed infections). Different concentrations of simulated mixed infections (Plasmodium vivax and Plasmodium falciparum) suggest that the COX-III direct PCR detects only the predominant species. When the 18s-rRNA direct nested PCR was used to detect Plasmodium in field collected bloods spots (n = 3833), there was discrepancy in the results from the genus PCR (16 % positive) and the species-specific PCR (5 % positive). Further, a large portion of a subset of these positive samples (93 % for genus and 60 % for P. vivax), did not align with Plasmodium sequences. In contrast, the COX-III direct PCR clearly identified (single bands confirmed with sequencing) 2 % positive Plasmodium samples including P. vivax, P. falciparum, Plasmodium malariae and Plasmodium ovale wallikeri. CONCLUSIONS: The COX-III single direct PCR is an alternative method for accurate detection of Plasmodium microscopic and submicroscopic infections in humans, especially when a large number of samples require screening. This PCR does not require DNA isolation, is sensitive, quick, produces confident/clear results, identifies all the Plasmodium species infecting humans, and is cost-effective.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Malária/diagnóstico , Plasmodium/genética , Proteínas de Protozoários/genética , Sequência de Bases , DNA de Protozoário/sangue , DNA de Protozoário/genética , Teste em Amostras de Sangue Seco , Humanos , Limite de Detecção , Malária/parasitologia , Dados de Sequência Molecular , Parasitemia/diagnóstico , Reação em Cadeia da Polimerase , Alinhamento de Sequência
10.
Sci Rep ; 5: 17952, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648001

RESUMO

The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination.


Assuntos
Anopheles/classificação , Biodiversidade , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Comportamento Animal , DNA Intergênico , Genes de Insetos , Insetos Vetores , Resistência a Inseticidas , Controle de Mosquitos/métodos , Filogenia , Análise de Sequência de DNA , Zâmbia
11.
Plant Cell ; 25(12): 4827-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24368787

RESUMO

Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two branched-chain amino acid transferases, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Genoma de Planta , Transaminases/genética , Aminoácidos de Cadeia Ramificada/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Haplótipos , Valor Nutritivo , Sementes/genética , Sementes/metabolismo , Transaminases/metabolismo , Transaminases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...