Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(2): 992-999, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088148

RESUMO

Pseudouridine (Ψ) and N1-methylpseudouridine (m1Ψ) are among the key modifications in the field of mRNA therapeutics and vaccine research. The accuracy of the design and development of therapeutic RNAs containing such modifications depends on the accuracy of the secondary structure prediction, which in turn depends on the nearest neighbor (NN) thermodynamic parameters for the standard and modified residues. Here, we propose a simple approach based on molecular dynamics simulations and linear interaction energy (LIE) approximation that is able to predict the NN free energy parameters for U-A, Ψ-A and m1Ψ-A pairs in reasonable agreement with the recent experimental reports. We report the NN thermodynamic parameters for different U, Ψ and m1Ψ base pairs, which might be helpful for a deeper understanding of the effect of these modifications in RNA. The predicted NN free energy parameters in this study are able to closely reproduce the folding free energies of duplexes containing internal Ψ for which the thermodynamic data were available. Additionally, we report the predicted folding free energies for the duplexes containing internal m1Ψ.


Assuntos
Pseudouridina , RNA , RNA/química , Pseudouridina/química , Conformação de Ácido Nucleico , Pareamento de Bases , Entropia , Termodinâmica
2.
J Am Chem Soc ; 145(46): 25318-25331, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943667

RESUMO

For many drug targets, it has been shown that the kinetics of drug binding (e.g., on rate and off rate) is more predictive of drug efficacy than thermodynamic quantities alone. This motivates the development of predictive computational models that can be used to optimize compounds on the basis of their kinetics. The structural details underpinning these computational models are found not only in the bound state but also in the short-lived ligand binding transition states. Although transition states cannot be directly observed experimentally due to their extremely short lifetimes, recent successes have demonstrated that modeling the ligand binding transition state is possible with the help of enhanced sampling molecular dynamics methods. Previously, we generated unbinding paths for an inhibitor of soluble epoxide hydrolase (sEH) with a residence time of 11 min. Here, we computationally modeled unbinding events with the weighted ensemble method REVO (resampling of ensembles by variation optimization) for five additional inhibitors of sEH with residence times ranging from 14.25 to 31.75 min, with average prediction accuracy within an order of magnitude. The unbinding ensembles are analyzed in detail, focusing on features of the ligand binding transition state ensembles (TSEs). We find that ligands with similar bound poses can show significant differences in their ligand binding TSEs, in terms of their spatial distribution and protein-ligand interactions. However, we also find similarities across the TSEs when examining more general features such as ligand degrees of freedom. Together these findings show significant challenges for rational, kinetics-based drug design.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Ligação Proteica , Ligantes , Termodinâmica , Cinética
3.
PLoS One ; 18(9): e0290907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656749

RESUMO

RNA structure is conformationally dynamic, and accurate all-atom tertiary (3D) structure modeling of RNA remains challenging with the prevailing tools. Secondary structure (2D) information is the standard prerequisite for most RNA 3D modeling. Despite several 2D and 3D structure prediction tools proposed in recent years, one of the challenges is to choose the best combination for accurate RNA 3D structure prediction. Here, we benchmarked seven small RNA PDB structures (40 to 90 nucleotides) with different topologies to understand the effects of different 2D structure predictions on the accuracy of 3D modeling. The current study explores the blind challenge of 2D to 3D conversions and highlights the performances of de novo RNA 3D modeling from their predicted 2D structure constraints. Our results show that conformational sampling-based methods such as SimRNA and IsRNA1 depend less on 2D accuracy, whereas motif-based methods account for 2D evidence. Our observations illustrate the disparities in available 3D and 2D prediction methods and may further offer insights into developing topology-specific or family-specific RNA structure prediction pipelines.


Assuntos
Benchmarking , Estrutura Familiar , Nucleotídeos , RNA
4.
Nat Struct Mol Biol ; 30(7): 902-913, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264140

RESUMO

Folding of nascent transcripts can be modulated by the RNA polymerase (RNAP) that carries out their transcription, and vice versa. A pause of RNAP during transcription of a preQ1 riboswitch (termed que-PEC) is stabilized by a previously characterized template consensus sequence and the ligand-free conformation of the nascent RNA. Ligand binding to the riboswitch induces RNAP pause release and downstream transcription termination; however, the mechanism by which riboswitch folding modulates pausing is unclear. Here, we report single-particle cryo-electron microscopy reconstructions of que-PEC in ligand-free and ligand-bound states. In the absence of preQ1, the RNA transcript is in an unexpected hyper-translocated state, preventing downstream nucleotide incorporation. Strikingly, on ligand binding, the riboswitch rotates around its helical axis, expanding the surrounding RNAP exit channel and repositioning the transcript for elongation. Our study reveals the tight coupling by which nascent RNA structures and their ligands can functionally regulate the macromolecular transcription machinery.


Assuntos
Proteínas de Escherichia coli , Riboswitch , RNA Bacteriano/química , Ligantes , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Dobramento de RNA , Bactérias/metabolismo , Conformação de Ácido Nucleico
5.
J Biomol Struct Dyn ; 41(6): 2221-2230, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100936

RESUMO

Modulation of structural and thermodynamic properties of nucleic acids with synthetic modifications is a promising area of research with possible applications in nanotechnology and nanotherapeutics. Locked nucleic acid (LNA) is one such modification in which the C4' and O2' atoms of the sugar moiety are connected through a methylene bridge. The LNA modified DNA aptamer RNV66, and its unmodified counterpart V7t1, both of which target the vascular endothelial growth factor (VEGF) implicated in oncogenic angiogenesis, have a G-rich tract that can fold into G-quadruplex structures. However, it is not understood why V7t1 has a polymorphic structure while its LNA modified counterpart RNV66 has a unique quadruplex fold with higher nuclease resistance, thermal stability and greater binding affinity for VEGF. In this work, we have performed extensive molecular dynamics simulations of RNV66 and V7t1 to study and compare the structural and dynamic consequences of the insertion of LNAs. It was observed that the increase in dynamic stability was significant in the presence of LNA residues and our protocol for combining different torsional parameters using OL15 for the DNA aptamer and parm99_LNA along with parmbsc0 and ßOL15 for the LNAs nicely reproduced the experimentally observed conformational features of RNV66. Our observations would help in further theoretical studies in understanding the lack of frustration in the folding of the LNA modified aptamer and its higher affinity for VEGF.Communicated by Ramaswamy H. Sarma.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
6.
Sci Rep ; 12(1): 15972, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153364

RESUMO

Recently, academic and industrial scientific communities involved in kinetics-based drug development have become immensely interested in predicting the drug target residence time. Screening drug candidates in terms of their computationally predicted residence times, which is a measure of drug efficacy in vivo, and simultaneously assessing computational binding affinities are becoming inevitable. Non-equilibrium molecular simulation approaches are proven to be useful in this purpose. Here, we have implemented an optimized approach of combining the data derived from steered molecular dynamics simulations and the Bell-Evans model to predict the absolute residence times of the antagonist ZMA241385 and agonist NECA that target the A2A adenosine receptor of the G-protein-coupled receptor (GPCR) protein family. We have predicted the absolute ligand residence times on the timescale of seconds. However, our predictions were many folds shorter than those determined experimentally. Additionally, we calculated the thermodynamics of ligand binding in terms of ligand binding energies and the per-residue contribution of the receptor. Subsequently, binding pocket hotspot residues that would be important for further computational mutagenesis studies were identified. In the experiment, similar sets of residues were found to be in significant contact with both ligands under study. Our results build a strong foundation for further improvement of our approach by rationalizing the kinetics of ligand unbinding with the thermodynamics of ligand binding.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Adenosina-5'-(N-etilcarboxamida) , Cinética , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo
7.
J Comput Aided Mol Des ; 36(3): 205-224, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338419

RESUMO

Pseudouridine is one of the most abundant post-transcriptional modifications in RNA. We have previously shown that the FF99-derived parameters for pseudouridine and some of its naturally occurring derivatives in the AMBER distribution either alone or in combination with the revised γ torsion parameters (parmbsc0) failed to reproduce their conformational characteristics observed experimentally (Deb et al. in J Chem Inf Model 54:1129-1142, 2014; Deb et al. in J Comput Chem 37:1576-1588, 2016; Dutta et al. in J Chem Inf Model 60:4995-5002, 2020). However, the application of the recommended bsc0 correction did lead to an improvement in the description not only of the distribution in the γ torsional space but also of the sugar pucker distributions. In an earlier study, we examined the transferability of the revised glycosidic torsion parameters (χIDRP) for Ψ to its derivatives. We noticed that although these parameters in combination with the AMBER FF99-derived parameters and the revised γ torsional parameters resulted in conformational properties of these residues that were in better agreement with experimental observations, the sugar pucker distributions were still not reproduced accurately. Here we report a new set of partial atomic charges for pseudouridine, 1-methylpseudouridine, 3-methylpseudouridine and 2'-O-methylpseudouridine and a new set of glycosidic torsional parameters (χND) based on chosen glycosidic torsional profiles that most closely corresponded to the NMR data for conformational propensities and studied their effect on the conformational distributions using REMD simulations at the individual nucleoside level. We have also studied the effect of the choice of water model on the conformational characteristics of these modified nucleosides. Our observations suggest that the current revised set of parameters and partial atomic charges describe the sugar pucker distributions for these residues more accurately and that the choice of a suitable water model is important for the accurate description of their conformational properties. We have further validated the revised sets of parameters by studying the effect of substitution of uridine with pseudouridine within single stranded RNA oligonucleotides on their conformational and hydration characteristics.


Assuntos
Pseudouridina , RNA , Conformação Molecular , Pseudouridina/química , RNA/química , Açúcares , Água/química
8.
Prog Biophys Mol Biol ; 169-170: 21-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35065168

RESUMO

Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.


Assuntos
Edição de RNA , RNA , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , RNA/metabolismo
9.
J Phys Chem B ; 125(30): 8342-8350, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34310879

RESUMO

Estimating the binding energies of small molecules to RNA could help uncover their molecular recognition characteristics and be used to rationally design RNA-targeting chemical probes. Here, we leveraged the ability of the fragment molecular orbital (FMO) method to provide detailed pairwise energetic information to examine the interactions between the aptamer domain of the flavin mononucleotide (FMN)-responsive riboswitch and small-molecule ligands. After developing an efficient protocol for executing high-level FMO calculations on RNA-ligand complexes, we applied our protocol to nine FMN-aptamer-ligand complexes. We then used the results to identify "hot-spots" within the aptamer and decomposed pairwise interactions between the hot-spot residues and the ligands. Interestingly, we found that several of these hot-spot residues interact with the ligands via atypical CH···O hydrogen bonds and anion-π contacts, as well as (face-to-edge) T-shaped π-π interactions. We envision that our results should pave the way for the wider and more prominent use of FMO calculations to study structure-energy relationships in diverse RNA-ligand systems, which in turn may provide a basis for dissecting the molecular recognition characteristics of RNAs.


Assuntos
Riboswitch , Mononucleotídeo de Flavina , Ligação de Hidrogênio , Ligantes , Conformação de Ácido Nucleico , RNA
10.
Sci Rep ; 9(1): 16278, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700156

RESUMO

Pseudouridine (Ψ) is the most common chemical modification present in RNA. In general, Ψ increases the thermodynamic stability of RNA. However, the degree of stabilization depends on the sequence and structural context. To explain experimentally observed sequence dependence of the effect of Ψ on the thermodynamic stability of RNA duplexes, we investigated the structure, dynamics and hydration of RNA duplexes with an internal Ψ-A base pair in different nearest-neighbor sequence contexts. The structures of two RNA duplexes containing 5'-GΨC/3'-CAG and 5'-CΨG/3'-GAC motifs were determined using NMR spectroscopy. To gain insight into the effect of Ψ on duplex dynamics and hydration, we performed molecular dynamics (MD) simulations of RNA duplexes with 5'-GΨC/3'-CAG, 5'-CΨG/3'-GAC, 5'-AΨU/3'-UAA and 5'-UΨA/3'-AAU motifs and their unmodified counterparts. Our results showed a subtle impact from Ψ modification on the structure and dynamics of the RNA duplexes studied. The MD simulations confirmed the change in hydration pattern when U is replaced with Ψ. Quantum chemical calculations showed that the replacement of U with Ψ affected the intrinsic stacking energies at the base pair steps depending on the sequence context. The calculated intrinsic stacking energies help to explain the experimentally observed sequence dependent changes in the duplex stability from Ψ modification.


Assuntos
Adenosina/química , Pareamento de Bases , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Pseudouridina/química , RNA/química , Simulação de Dinâmica Molecular , Estrutura Molecular
11.
J Chem Theory Comput ; 15(11): 5817-5828, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31509413

RESUMO

Molecular dynamics (MD) simulations can be a powerful tool for modeling complex dissociative processes such as ligand unbinding. However, many biologically relevant dissociative processes occur on timescales that far exceed the timescales of typical MD simulations. Here, we implement and apply an enhanced sampling method in which specific energy terms in the potential energy function are selectively "scaled" to accelerate dissociative events during simulations. Using ligand unbinding as an example of a complex dissociative process, we selectively scaled up ligand-water interactions in an attempt to increase the rate of ligand unbinding. After applying our selectively scaled MD (ssMD) approach to several cyclin-dependent kinase-inhibitor complexes, we discovered that we could accelerate ligand unbinding, thereby allowing, in some cases, unbinding events to occur within as little as 2 ns. Moreover, we found that we could make realistic estimates of the initial unbinding times (τunbindsim) as well as the accompanying change in free energy (ΔGsim) of the inhibitors from our ssMD simulation data. To accomplish this, we employed a previously described Kramers'-based rate extrapolation method and a newly described free energy extrapolation method. Because our ssMD approach is general, it should find utility as an easy-to-deploy, enhanced sampling method for modeling other dissociative processes.


Assuntos
Quinase 2 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Sítios de Ligação , Quinase 2 Dependente de Ciclina/metabolismo , Ligantes , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Termodinâmica
12.
J Comput Chem ; 37(17): 1576-88, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030560

RESUMO

UNLABELLED: The currently available force field parameters for modified RNA residues in AMBER show significant deviations in conformational properties from experimental observations. The examination of the transferability of the recently revised torsion parameters revealed that there was an overall improvement in the conformational properties for some of the modifications but the improvements were still insufficient in describing the sugar pucker preferences (J. Chem. Inf. MODEL: 2014, 54, 1129-1142). Here, we report an approach for the development and fine tuning of the AMBER force field parameters for 2-thiouridine, 4-thiouridine, and pseudouridine with diverse conformational preferences. The χ torsion parameters were reparameterized at the individual nucleoside level. The effect of combining the revised γ torsion parameter and modifying the Lennard-Jones σ parameters were also tested by directly comparing the conformational preferences obtained from our extensive molecular dynamics simulations with those from experimental observations. © 2016 Wiley Periodicals, Inc.

13.
Biopolymers ; 101(10): 985-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24729441

RESUMO

The structural effects of the commonly occurring modified nucleoside dihydrouridine (D) observed experimentally in model oligonucleotides include a strong destabilization of the C3'-endo sugar conformation of D, the disruption of stacking interactions of neighboring residues with D and a possible destabilization of the C3'-endo sugar pucker of the 5'-neighboring nucleoside. Our simulations with a combination of a set of parameters for modified RNA residues with the recently developed AMBER FF99χ force field having reoptimized glycosidic torsion angle parameters for standard nucleosides was found to reproduce the destabilizing effect of dihydrouridine better than with the AMBER FF99 force field for nucleic acids for which the parameters for the modified residues were originally developed.


Assuntos
Simulação de Dinâmica Molecular , Uridina/química , Carboidratos/química , Conformação de Ácido Nucleico , Rotação , Uridina/análogos & derivados
14.
J Chem Inf Model ; 54(4): 1129-42, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697757

RESUMO

The widespread occurrence of modified residues in RNA sequences necessitates development of accurate parameters for these modifications for reliable modeling of RNA structure and dynamics. A comprehensive set of parameters for the 107 naturally occurring RNA modifications was proposed by Aduri et al. (J. Chem. Theory Comput. 2007, 3, 1464-1475) for the AMBER FF99 force field. In this work, we tested these parameters on a set of modified uridine residues, namely, dihydrouridine, 2-thiouridine, 4-thiouridine, pseudouridine, and uridine-5-oxyacetic acid, by performing molecular dynamics and replica exchange molecular dynamics simulations of these nucleosides. Although our simulations using the FF99 force field did not, in general, reproduce the experimentally observed conformational characteristics well, combination of the parameter set with recent revisions of the FF99 force field for RNA showed noticeable improvement for some of the nucleosides.


Assuntos
Conformação Molecular , Uridina/química , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...