Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(39): 9662-9671, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590866

RESUMO

The aggregation of the amyloid beta (Aß) protein into plaques is a pathological feature of Alzheimer's disease (AD). While amyloid aggregates have been extensively studied in vitro, their structural aspects and associated chemistry in the brain are not fully understood. In this report, we demonstrate, using infrared spectroscopic imaging, that Aß plaques exhibit significant heterogeneities in terms of their secondary structure and phospholipid content. We show that the capabilities of discrete frequency infrared imaging (DFIR) are ideally suited for characterization of amyloid deposits in brain tissues and employ DFIR to identify nonplaque ß-sheet aggregates distributed throughout brain tissues. We further demonstrate that phospholipid-rich ß-sheet deposits exist outside of plaques in all diseased tissues, indicating their potential clinical significance. This is the very first application of DFIR toward a characterization of protein aggregates in an AD brain and provides a rapid, label-free approach that allows us to uncover ß-sheet heterogeneities in the AD, which may be significant for targeted therapeutic strategies in the future.


Assuntos
Peptídeos beta-Amiloides/química , Espectrofotometria Infravermelho , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Humanos , Agregados Proteicos , Conformação Proteica em Folha beta
2.
Part Fibre Toxicol ; 18(1): 16, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771183

RESUMO

BACKGROUND: A very pure multi-walled carbon nanotube (MWCNT) that was shown to have very low toxicity in vitro, was evaluated for lung and systemic effects and distribution following inhalation exposure. METHODS: B6C3F1/N mice were exposed to varying doses (0, 0.06, 0.2, and 0.6 mg/m3) of the (99.1% carbon) MWCNT by inhalation for 30 days (excluding weekends). Ten days following the last exposure, the lungs and spleen were harvested and processed for histology and immune cell population assessment. In addition, lung lavage cells and fluid were analyzed. Stimulated Raman scattering (SRS) was used to identify particles in the lungs, spleen, kidneys, liver, mediastinal and brachial lymph nodes, and olfactory bulb. Splenic tissue sections were stained with hematoxylin and eosin (H&E) for light microscopic histopathology assessment. Blood plasma was analyzed for cytokines and cathepsins. A section of the spleen was processed for RNA isolation and relative gene expression for 84 inflammation-related cytokines/chemokines. RESULTS: Following MWCNT exposure, particles were clearly evident in the lungs, spleens, lymph nodes and olfactory bulbs, (but not livers or kidneys) of exposed mice in a dose-dependent manner. Examination of the lavaged lung cells was unremarkable with no significant inflammation indicated at all particle doses. In contrast, histological examination of the spleen indicated the presence of apoptotic bodies within T cells regions of the white pulp area. Isolated splenic leukocytes had significant changes in various cells including an increased number of proinflammatory CD11b+Ly6C+ splenic cells. The gene expression studies confirmed this observation as several inflammation-related genes were upregulated particularly in the high dose exposure (0.6 mg/m3). Blood plasma evaluations showed a systemic down-regulation of inflammatory cytokines and a dose-dependent up-regulation of lysosomal cathepsins. CONCLUSIONS: The findings in the lungs were consistent with our hypothesis that this MWCNT exposure would result in minimal lung inflammation and injury. However, the low toxicity of the MWCNT to lung macrophages may have contributed to enhanced migration of the MWCNT to the spleen through the lymph nodes, resulting in splenic toxicity and systemic changes in inflammatory mediators.


Assuntos
Exposição por Inalação , Nanotubos de Carbono , Material Particulado/toxicidade , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar , Pulmão , Camundongos , Camundongos Endogâmicos
3.
Transl Vis Sci Technol ; 8(3): 33, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31183249

RESUMO

PURPOSE: We analyze melanin structure and biochemical composition in conjunctival melanocytic lesions using pump-probe microscopy to assess the potential for this method to assist in melanoma diagnosis. METHODS: Pump-probe microscopy interrogates transient excited-state photodynamic properties of absorbing molecules, which yields highly specific molecular information with subcellular spatial resolution. This method is applied to analyze melanin in 39 unstained, thin biopsy specimens of melanocytic conjunctival lesions. Quantitative features of the biochemical composition and structure of melanin in histopathologic specimens are assessed using a geometric representation of principal component analysis (PCA) and principles of mathematical morphology. Diagnostic power is determined using a feature selection algorithm combined with cross validation. RESULTS: Conjunctival melanomas show higher biochemical heterogeneity and different overall biochemical composition than primary acquired melanosis of the conjunctiva (PAM) without severe atypia. The molecular signatures of PAMs with severe atypia more closely resemble melanomas than other types of PAMs. Pigment organization in the tissue becomes more disorganized as diagnosis of the lesions worsen, but nevi are more inconsistent biochemically and structurally than other lesions. Relatively high sensitivity (SE) and specificity (SP) is achieved for differentiating between various melanocytic lesions, particularly PAMs without severe atypia and melanomas (SE = 89%; SP = 87%). CONCLUSIONS: Pump-probe microscopy is a powerful tool that can identify quantitative, phenotypic differences between various types of conjunctival melanocytic lesions. TRANSLATIONAL RELEVANCE: This study further validates the use of pump-probe microscopy as a potential diagnostic aid for histopathologic evaluation of conjunctival melanocytic lesions.

4.
Nanotoxicology ; 13(2): 143-159, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31111787

RESUMO

Functionalization of multi-walled carbon nanotubes (MWCNT) is known to affect the biological response (e.g. toxicity, inflammation) in vitro and in vivo. However, the reasons for these changes in vivo are not well described. This study examined the degree of MWCNT functionalization with regard to in vivo mouse lung distribution, particle retention, and resulting pathology. A commercially available MWCNT (source MWCNT) was functionalized (f-MWCNT) by systematically varying the degree of carboxylation on the particle's surface. Following a pilot study using seven variants, two f-MWCNT variants were chosen and for lung pathology and particle distribution using oropharyngeal aspiration administration of MWCNT in Balb/c mice. Particle distribution in the lung was examined at 7 and 28 days post-instillation by bright-field microscopy, CytoViva hyperspectral dark-field imaging, and Stimulated Raman Scattering (SRS) microscopy. Examination of the lung tissue by bright-field microscopy showed some acute inflammation for all MWCNT that was highest with source MWCNT. Hyperspectral imaging and SRS were employed to assess the changes in particle deposition and retention. Highly functionalized MWCNT had a higher lung burden and were more disperse. They also appeared to be associated more with epithelial cells compared to the source and less functionalized MWCNT that were mostly interacting with alveolar macrophages (AM). These results showing a slightly reduced pathology despite the extended deposition have implications for the engineering of safer MWCNT and may establish a practical use as a targeted delivery system.


Assuntos
Pulmão/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/metabolismo , Pneumonia/patologia , Propriedades de Superfície , Distribuição Tecidual
5.
ACS Appl Mater Interfaces ; 11(19): 17157-17166, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017392

RESUMO

Ultrasmall iron oxide nanoparticles (USIONPs) (<4 nm) have recently attracted significant attention because of their potential as positive T1 magnetic resonance imaging (MRI) contrast agent contrary to larger superparamagnetic iron oxide nanoparticles (>6 nm) which act as negative T2 MRI contrast agents. However, studies on the cellular uptake behavior of these nanoparticles are very limited compared to their counterpart, larger-sized superparamagnetic iron oxide nanoparticles. In particular, the effects of specific nanoparticle parameters on the cellular uptake behavior of USIONPs by various cancer cells are not available. Here, we specifically investigated the role of USIONPs' surface functionalities [tannic acid (TA) and quinic acid (QA)] in mediating cellular uptake behavior of cancer cells pertaining to primary (U87 cells) and metastatic (MDA-MB-231Br cells) brain malignancies. Here, we chose TA and QA as representative capping molecules, wherein TA coating provides a general negatively charged nontargeting surface while QA provides a tumor-targeting surface as QA and its derivatives are known to interact with selectin receptors expressed on tumor cells and tumor endothelium. We observed differential cellular uptake in the case of TA- and QA-coated USIONPs by cancer cells. Both the cell types showed significantly higher cellular uptake of QA-coated USIONPs compared to TA-coated USIONPs at 4, 24, and 72 h. Blocking studies indicated that P-selectin cell surface receptors, in part, mediated the cellular uptake of QA-coated USIONPs. Given that P-selectin is overexpressed in cancer cells, tumor microenvironment, and at the metastatic niche, QA-coated USIONPs hold potential to be utilized as a platform for tumor-targeted drug delivery and in imaging and detection of primary and metastatic tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/farmacologia , Compostos Férricos/farmacologia , Nanopartículas de Magnetita/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Meios de Contraste/química , Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Selectina-P/genética , Ácido Quínico/química , Ácido Quínico/farmacologia , Propriedades de Superfície , Taninos/química , Taninos/farmacologia
6.
PLoS One ; 13(2): e0192667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447222

RESUMO

Phosphatidylinositides play important roles in cellular signaling and migration. Phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) is an important phosphatidylinositide because it acts as a secondary messenger to trigger cell movement and proliferation. A high level of PI(3,4,5)P3 at the plasma membrane is known to contribute to tumorigenesis. One key enzyme that regulates PI(3,4,5)P3 levels at the plasma membrane is phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which dephosphorylates PI(3,4,5)P3 through hydrolysis to form phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). It has been reported that PI(4,5)P2 is involved in positive feedback in the PI(3,4,5)P3 hydrolysis by PTEN. However, how PI(3,4,5)P3 dephosphorylation by PTEN is regulated, is still under debate. How other PI(3,4,5)P3-binding proteins affect the dephosphorylation kinetics catalyzed by PTEN also remains unclear. Here, we develop a fluorescent-protein biosensor approach to study how PI(3,4,5)P3 dephosphorylation is regulated by PTEN as well as its membrane-mediated feedback mechanisms. Our observation of sigmoidal kinetics of the PI(3,4,5)P3 hydrolysis reaction supports the notion of autocatalysis in PTEN function. We developed a kinetic model to describe the observed reaction kinetics, which allowed us to i) distinguish between membrane-recruitment and allosteric activation of PTEN by PI(4,5)P2, ii) account for the influence of the biosensor on the observed reaction kinetics, and iii) demonstrate that all of these mechanisms contribute to the kinetics of PTEN-mediated catalysis.


Assuntos
Membranas Artificiais , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Técnicas Biossensoriais , Catálise , Hidrólise , Cinética , Modelos Teóricos , Fosforilação
7.
J Phys Chem Lett ; 8(21): 5325-5330, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29023128

RESUMO

We report here the first mesoscale characterization of solvent environments in the metal-organic framework (MOF) Cu3(BTC)2 using infrared imaging. Two characteristic populations of the MOF structures corresponding to the carboxylate binding to the Cu(II) (metal) ions were observed, which reflect a regular solvated MOF structure with axial solvents in the binuclear copper paddlewheel and an unsolvated defect mode that lacks axial solvent coordination. Infrared imaging also shows strong correlation between solvent localization and the spatial distribution of the solvated population within the MOF. This is a vital result as any remnant solvent molecules adsorbed inside of MOFs can render them less effective. We propose fast IR imaging as a potential characterization technique that can measure adsorbate and defect distributions in MOFs.

8.
Biomed Opt Express ; 8(8): 3882-3890, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28856057

RESUMO

Microscopic variations in melanin composition can be mapped through linear and nonlinear optical responses. Though instrumentation to measure linear attenuation is simple and inexpensive, the nonlinear response provides more degrees of freedom with which to spectroscopically resolve pigments. The objective of this study is to assess differences in imaging melanin contrast by comparing hyperspectral (linear) versus pump-probe (nonlinear) microscopy of unstained histology sections of pigmented lesions. The images and analysis we have presented here show that pump-probe uncovers a greater variation in pigment composition, compared with hyperspectral microscopy, and that the two methods yield complimentary biochemical information.

9.
J Phys Chem Lett ; 8(16): 3740-3744, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28742348

RESUMO

We have observed time-resolved, structural dynamics of a coherent vibrational wavepacket in Rydberg-excited N-methyl morpholine, a molecule with 48 internal degrees of freedom. The molecular structure was established by associating the time-dependent Rydberg electron binding energy, obtained from time-resolved photoionization-photoelectron spectroscopy, to the molecular structure using self-interaction corrected density functional calculations. Optical excitation at 226 nm launches an oscillatory wavepacket in the amine umbrella coordinate with a 650 fs period. Even though the Franck-Condon excitation is at an angle of 17°, the wavepacket settles into an oscillation between 4° and -10° within a fraction of a vibrational period and then dephases with a time constant of 750 fs.

10.
J Low Genit Tract Dis ; 21(2): 137-144, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28157824

RESUMO

OBJECTIVES: Melanomas of the female genital tract present a unique clinical challenge. Not only are these lesions in an anatomically sensitive area, but also they tend to be multifocal and have high recurrence rates. Furthermore, several benign melanocytic proliferations resemble early-stage melanoma clinically and/or histopathologically. Thus, there is a significant need for additional tools that can help correctly diagnose and stage these lesions. Here, we quantitatively and nondestructively analyze the chemical composition of melanin in excised pigmented lesions of the female genital tract using pump-probe microscopy, a high-resolution optical imaging technique that is sensitive to many biochemical properties of melanin. MATERIALS AND METHODS: Thirty-one thin (~5 µm) tissue sections previously excised from female genital tract melanocytic lesions were imaged with pump-probe microscopy and analyzed. RESULTS: We find significant quantitative differences in melanin type and structure between melanoma and nonmalignant melanocytic proliferations. Our analysis also suggests a link between the molecular signatures of melanins and lesion-specific genetic mutations. Finally, significant differences are found between metastatic and nonmetastatic melanomas. The limitations of this work include the fact that molecular information is restricted to melanin pigment and the sample size is relatively small. CONCLUSIONS: Pump-probe microscopy provides unique information regarding the biochemical composition of genital tract melanocytic lesions, which can be used to improve the diagnosis and staging of vulvar melanomas.


Assuntos
Neoplasias dos Genitais Femininos/diagnóstico , Melanoma/diagnóstico , Microscopia/métodos , Patologia/métodos , Coloração e Rotulagem/métodos , Feminino , Humanos , Melaninas/análise , Estadiamento de Neoplasias/métodos
11.
Sci Rep ; 6: 36871, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833147

RESUMO

Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.


Assuntos
Melaninas/metabolismo , Melanoma/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Algoritmos , Humanos , Melanoma/metabolismo , Microscopia Confocal , Nevo Azul/diagnóstico por imagem , Nevo Azul/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo
12.
Biomed Opt Express ; 6(9): 3631-45, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26417529

RESUMO

Metastatic melanoma is associated with a poor prognosis, but no method reliably predicts which melanomas of a given stage will ultimately metastasize and which will not. While sentinel lymph node biopsy (SLNB) has emerged as the most powerful predictor of metastatic disease, the majority of people dying from metastatic melanoma still have a negative SLNB. Here we analyze pump-probe microscopy images of thin biopsy slides of primary melanomas to assess their metastatic potential. Pump-probe microscopy reveals detailed chemical information of melanin with subcellular spatial resolution. Quantification of the molecular signatures without reference standards is achieved using a geometrical representation of principal component analysis. Melanin structure is analyzed in unison with the chemical information by applying principles of mathematical morphology. Results show that melanin in metastatic primary lesions has lower chemical diversity than non-metastatic primary lesions, and contains two distinct phenotypes that are indicative of aggressive disease. Further, the mathematical morphology analysis reveals melanin in metastatic primary lesions has a distinct "dusty" quality. Finally, a statistical analysis shows that the combination of the chemical information with spatial structures predicts metastatic potential with much better sensitivity than SLNB and high specificity, suggesting pump-probe microscopy can be an important tool to help predict the metastatic potential of melanomas.

13.
PLoS One ; 8(11): e81820, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244748

RESUMO

Apart from few early biophysical studies, the relative thermal instability of HbE has been only shown by clinical investigations. We have compared in vitro thermal stability of HbE with HbA2 and HbA using optical spectroscopy. From absorption measurements in the soret region, synchronous fluorescence spectroscopy and dynamic light scattering experiments, we have found thermal stability of the three hemoglobin variants following the order HbE11.0 in all the three variants. Under oxidative stress conditions in presence of hydrogen peroxide, HbE has been found to be more vulnerable to aggregation compared to HbA and HbA2. Taken together, these studies have shown thermal and oxidative instability of HbE and points towards the role of HbE in the upregulation of redox regulators and chaperone proteins in erythrocyte proteome of patients suffering from HbEbeta thalassemia.


Assuntos
Hemoglobina A/química , Hemoglobina A/metabolismo , Hemoglobina E/química , Hemoglobina E/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Dobramento de Proteína , Estabilidade Proteica
14.
J Phys Chem A ; 116(2): 810-9, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22175717

RESUMO

We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.


Assuntos
Nitrito de Amila/química , Fotólise , Raios Ultravioleta , Radicais Livres/química , Cinética , Espectrometria de Massas , Óxido Nítrico/química , Pentoxil (Uracila)/química , Espectroscopia Fotoeletrônica , Teoria Quântica , Propriedades de Superfície
15.
J Chem Phys ; 135(4): 044319, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21806131

RESUMO

In molecular beams, the tertiary amine N,N-dimethylisopropyl amine can form molecular clusters that are evident in photoelectron and mass spectra obtained upon resonant multiphoton ionization via the 3p and 3s Rydberg states. By delaying the ionization pulse from the excitation pulse we follow, in time, the ultrafast energy relaxation dynamics of the 3p to 3s internal conversion and the ensuing cluster evaporation, proton transfer, and structural dynamics. While evaporation of the cluster occurs in the 3s Rydberg state, proton transfer dominates on the ion surface. The mass-spectrum shows protonated species that arise from a proton transfer from the alpha-carbon of the neutral parent molecule to the N-atom of its ionized partner in the dimer. DFT calculations support the proton transfer mechanism between tightly bonded cluster components. The photoelectron spectrum shows broad peaks, ascribed to molecular clusters, which have an instantaneous shift of about 0.5 eV toward lower binding energies. That shift is attributed to the charge redistribution associated with the induced dipoles in surrounding cluster molecules. A time-dependent shift that decreases the Rydberg electron binding energy by a further 0.4 eV arises from the structural reorganization of the cluster solvent molecules as they react to the sudden creation of a charge.

16.
J Phys Chem A ; 115(10): 1804-9, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21338167

RESUMO

Rotations about its three carbon-nitrogen bonds give triethylamine a complex, 3-dimensional potential energy landscape of conformeric structures. Electronic excitation to Rydberg states prepares the molecule in a high-energy, nonequilibrium distribution of such conformers, initiating ultrafast transitions between them. Time-resolved Rydberg electron binding energy spectra, observed using photoionization-photoelectron spectroscopy with ultrashort laser pulses, reveal these time-evolving structures. The time-dependent structural fingerprint spectra are assigned with the aid of a computational analysis of the potential energy landscape. Upon 209 nm electronic excitation to the 3p Rydberg state, triethylamine decays to 3s with a 200 fs time constant. The initially prepared conformer reacts to a mixture of structures with a time constant of 232 fs and settles into a final geometry distribution on a further subpicosecond time scale. The binding energy of the Rydberg electron is found to be an important determinant of the conformeric energy landscape.


Assuntos
Etilaminas/química , Conformação Molecular , Movimento (Física) , Butilaminas/química , Cinética , Modelos Moleculares , Análise Espectral , Termodinâmica
17.
Annu Rev Phys Chem ; 62: 19-39, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21054174

RESUMO

The photochemically induced electrocyclic ring-opening reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene serves as a prototype for many important reactions in chemistry and in biological systems. Based on experimental and computational studies, a detailed picture of the reaction has now emerged: Excitation to the Franck-Condon region places the molecule on a steeply repulsive part of the 1B potential energy surface, which propels the molecule in exactly the conrotatory direction that conforms to the Woodward-Hoffmann rules of orbital symmetry. Bypassing a cusp in a symmetry-breaking direction, the wave packet enters the 2A state within 55 fs. It continues to move directly toward the 2A/1A conical intersection, where it crosses in approximately 80 fs to the ground state. This article summarizes the published experimental and theoretical work to describe the current understanding of the reaction while pointing to important questions that remain to be addressed.

18.
J Phys Chem A ; 114(26): 7021-5, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20540545

RESUMO

The photoelectron spectrum shows that multiphoton ionization of amyl nitrite, C(5)H(11)ONO, using ultrafast laser pulses deposits up to 3.7 eV of energy into internal degrees of freedom. As a result, the molecules fragment to produce various daughter ions of masses 87, 71, 60, 57, 41, 30, 29, and 27. Absorption of an additional photon with 3 eV of energy by the ions yields transients with picosecond decay times, revealing the time scale of the decomposition dynamics of the initially prepared parent ion. Each mass peak has a distinct time constant, in the range of 1.2 to 7.9 ps, emphasizing the dependence of the fragmentation mechanism on the ion internal energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...