Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36327176

RESUMO

Post-stroke therapy restores lost skills. Traditionally, patients are supported by skilled therapists who monitor their progress and evaluate the program's effectiveness. Due to a shortage of qualified therapists, rehabilitation facilities are both expensive and inadequate. Furthermore, evaluations may be subjective and prone to errors. These limitations motivate the researchers to devise automated systems with minimal human intervention, therapist-like assessment, and broader outreach. This article reviews seminal works from 2013 onwards, qualitatively and quantitatively adapting the PRISMA approach to examine the potential of robot-assisted, virtual reality-based rehabilitation and automated assessments through data-driven learning. Extensive experimentation on KIMORE and UI-PRMD datasets reveal high agreement between automated methods and therapists. Our investigation shows that deep learning with spatio-temporal skeleton data and dynamic attention outperforms others, with an RMSE as low as 0.55. Fully automated rehabilitation is still in development, but, being an active research topic, it could hasten objective assessment and improve outreach.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Inteligência Artificial
2.
Artigo em Inglês | MEDLINE | ID: mdl-35139022

RESUMO

Health professionals often prescribe patients to perform specific exercises for rehabilitation of several diseases (e.g., stroke, Parkinson, backpain). When patients perform those exercises in the absence of an expert (e.g., physicians/therapists), they cannot assess the correctness of the performance. Automatic assessment of physical rehabilitation exercises aims to assign a quality score given an RGBD video of the body movement as input. Recent deep learning approaches address this problem by extracting CNN features from co-ordinate grids of skeleton data (body-joints) obtained from videos. However, they could not extract rich spatio-temporal features from variable-length inputs. To address this issue, we investigate Graph Convolutional Networks (GCNs) for this task. We adapt spatio-temporal GCN to predict continuous scores(assessment) instead of discrete class labels. Our model can process variable-length inputs so that users can perform any number of repetitions of the prescribed exercise. Moreover, our novel design also provides self-attention of body-joints, indicating their role in predicting assessment scores. It guides the user to achieve a better score in future trials by matching the same attention weights of expert users. Our model successfully outperforms existing exercise assessment methods on KIMORE and UI-PRMD datasets.


Assuntos
Terapia por Exercício , Redes Neurais de Computação , Exercício Físico , Terapia por Exercício/métodos , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...