Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 166381, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595902

RESUMO

This study discusses carbon sequestration variability in different ecosystems of India. Four different biosphere regions, each over 0.5° × 0.5° area, have been selected considering the geospatial and climatic variability of these regions expanding from Central India (CI), the Northeast region (NER), the Western Ghats (WG), and the Western Himalayan region (WHNI). The climatic conditions of these four regions are different so are the biosphere constituents of these regions. We expect the Gross Primary Productivity (GPP) to enhance during the all India summer monsoon rainfall season but in varied magnitudes suggesting a role of climatic parameters and flora in these regions. The GPP from FLUXCOM for the duration of 2001 to 2019 (19 years) and satellite-derived vegetation indices like the Normalized Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Leaf Area Index (LAI) are used in this study to understand the response of regional vegetation to this variability. EVI seems to be better related to GPP in comparison to NDVI in the preliminary analysis. Further analysis suggests LAI correlates better to GPP than EVI and NDVI in different seasons in these four regions. Also, meteorological parameters like surface temperature, rainfall, soil water, and other derived parameters like Vapor Pressure Deficit (VPD) are studied. It is also observed that the year-to-year variability in the climatic conditions could also have a role to play in the observed features. It is proven that the climate around the world is experiencing changes. Vegetation is one of the potent markers to monitor the impact of climate change. These long-term data and trends were studied to understand if there is any significant impact of the changing climatic conditions on the vegetation in these regions. Our study shows that there is an increasing (positive) trend in GPP at these locations though at different rates. WG and WHNI have shown a significant high rate of increase (6.44 and 5.36 gCm-2 y-1, respectively) in GPP over the last two decades.

2.
Glob Chang Biol ; 27(23): 6192-6205, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34525229

RESUMO

Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011-2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was -718 ±â€…128 g C m-2 as a sink in the pre-disturbance years (2011-2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%-93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.


Assuntos
Ecossistema , Neve , Carbono , Dióxido de Carbono , Mudança Climática , Florestas
3.
Environ Monit Assess ; 191(4): 258, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30929086

RESUMO

The diurnal and seasonal variation of soil carbon dioxide (CO2) flux was measured in the Pichavaram mangrove forest, the Southeast coast of India from February 2016 to October 2016 using an automated soil CO2 flux chamber system. Maximum soil CO2 efflux reached at 14:00 h and minimum at 00:00 h. The surface soil CO2 concentration ranged from 375 to 532 ppm with the mean 405 ± 18 ppm. The daily soil CO2 flux varied from near zero to about 7 µmol m-2 s-1 with a mean value of 2.4 ± 1.3 µmol m-2 s-1. The highest seasonal CO2 efflux from soil was during the summer and premonsoon seasons, whereas low flux values were recorded during the monsoon season. Soil CO2 efflux values were highly correlated with soil temperature. Tidal inundation during monsoon season, extreme drought condition in summer, and unusual precipitation are the major factors controlling the soil CO2 flux.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , Mudança Climática , Monitoramento Ambiental/métodos , Solo/química , Áreas Alagadas , Índia , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...