Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 236: 122837, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635227

RESUMO

A quartz crystal microbalance (QCM) sensor was developed in this study with the vegetable oil from olive (OLV-QCM) to detect an important volatile organic compound, ß-pinene in Indian cardamom. Hydrophobic vegetable oil from olive, which contains oleic acid and omega-9, a monounsaturated fatty acid was found to be suitable for binding ß-pinene through non-covalent bonds. The fabricated QCM sensor coating was examined with the field emission scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR) to determine its surface morphology and chemical compositions. The sensitivity, reproducibility, repeatability, and reusability were studied for the developed sensor. Notably, the sensor was observed to be highly selective towards ß-pinene as compared to the other volatile components present in cardamom. The limit of detection (LOD) and limit of quantitation (LOQ) parameters were determined as 5.57 mg L-1 and 18.57 mg L-1, respectively. Moreover, the adsorption isotherm models of the sensor were studied to validate the physical adsorption affinity towards ß-pinene applying Langmuir, Freundlich, and Langmuir-Freundlich isotherm models. The sensor showed a correlation factor of 0.99 with the peak area percentage of gas chromatography-mass spectrometry (GC-MS) analysis for ß-pinene in cardamom samples. The sensor was prepared with natural vegetable oil, unlike health hazard chemicals. In addition to this, the low-cost, easy fabrication process ensured the suitability of the sensor for practical deployment.


Assuntos
Elettaria , Impressão Molecular , Monoterpenos Bicíclicos , Óleos de Plantas , Polímeros , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...