Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
3.
J Virol ; 97(2): e0153222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36722972

RESUMO

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intracelular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/virologia , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Cricetinae
4.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
5.
mBio ; 14(1): e0018823, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700642

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Infecções Respiratórias , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vírus/genética
6.
mSphere ; 8(2): e0003423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36700653

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Antivirais
7.
bioRxiv ; 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36203546

RESUMO

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'- O methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'- O MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo , using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive to type I interferon (IFN-I) in vitro . Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'- O methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, a methyltransferase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a possible target for future antiviral therapies. Importance: Similar to other coronaviruses, disruption of SARS-CoV-2 NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo , our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1, but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'- O methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.

8.
J Virol ; 96(18): e0130522, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094313

RESUMO

Curriculum guidelines for virology are needed to best guide student learning due to the continuous and ever-increasing volume of virology information, the need to ensure that undergraduate and graduate students have a foundational understanding of key virology concepts, and the importance in being able to communicate that understanding to both other virologists and nonvirologists. Such guidelines, developed by virology educators and the American Society for Virology Education and Career Development Committee, are described herein.


Assuntos
Currículo , Universidades , Virologia , Educação de Pós-Graduação , Estados Unidos , Virologia/educação
9.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881779

RESUMO

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Assuntos
COVID-19 , Furina , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral/genética
10.
PLoS Biol ; 19(11): e3001284, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735434

RESUMO

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2-infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Animais , COVID-19/patologia , Vacinas contra COVID-19/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Genética Reversa , Inoculações Seriadas , Replicação Viral
11.
J Infect Dis ; 224(9): 1550-1555, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33961055

RESUMO

Zika virus (ZIKV) deoxyribonucleic acid vaccine VRC5283 encoding viral structural genes has been shown to be immunogenic in humans. Recognizing that antigenically related flaviviruses cocirculate in regions with ZIKV activity, we explored the degree of antibody cross-reactivity elicited by this vaccine candidate using genetically diverse flaviviruses. The antibody response of vaccinated individuals with no evidence of prior flavivirus infection or vaccine experience had a limited capacity to bind heterologous viruses. In contrast, vaccine-elicited antibodies from individuals with prior flavivirus experience had a greater capacity to bind, but not neutralize, distantly related flaviviruses. These findings suggest that prior flavivirus exposure shapes the humoral immune response to vaccination.


Assuntos
Anticorpos Neutralizantes , Flavivirus , Vacinas de DNA , Infecção por Zika virus , Zika virus , Anticorpos Antivirais , Formação de Anticorpos , Reações Cruzadas , Flavivirus/genética , Flavivirus/imunologia , Humanos , Testes de Neutralização , Plasmídeos , Vacinas , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/prevenção & controle
12.
bioRxiv ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33972939

RESUMO

The emergence of SARS-CoV-2 has resulted in a worldwide pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of COVID-19 disease have been hampered by the lack of robust mouse models. To overcome this barrier, we utilized a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARSCoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse-adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Utilizing this model, we demonstrate that SARS-CoV-2 infected mice are protected from lethal challenge with the original SARS-CoV, suggesting immunity from heterologous CoV strains. Together, the results highlight the utility of this mouse model for further study of SARS-CoV-2 infection and disease.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33884050

RESUMO

Effectively reading and interpreting scientific literature are fundamental skills for students pursuing degrees in STEM fields. In-person classes allow for real-time discussion and dissection of scientific literature; however, with increasing focus on virtual learning environments, alternative approaches are needed to promote student development of these skills. This manuscript presents suggestions for conducting paper discussions in asynchronous environments via learning management system (LMS) message boards. Modifications of this paper discussion activity for different class sizes, educational levels, and assignment goals are included.

14.
Cell Host Microbe ; 29(4): 508-515, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33789086

RESUMO

More than a year after its emergence, COVID-19, the disease caused by SARS-CoV-2, continues to plague the world and dominate our daily lives. Even with the development of effective vaccines, this coronavirus pandemic continues to cause a fervor with the identification of major new variants hailing from the United Kingdom, South Africa, Brazil, and California. Coupled with worries over a distinct mink strain that has caused human infections and potential for further mutations, SARS-CoV-2 variants bring concerns for increased spread and escape from both vaccine and natural infection immunity. Here, we outline factors driving SARS-CoV-2 variant evolution, explore the potential impact of specific mutations, examine the risk of further mutations, and consider the experimental studies needed to understand the threat these variants pose. In this review, Plante et al. examine SARS-CoV-2 variants including B.1.1.7 (UK), B.1.351 (RSA), P.1 (Brazil), and B.1.429 (California). They focus on what factors contribute to variant emergence, mutations in and outside the spike protein, and studies needed to understand the impact of variants on infection, transmission, and vaccine efficacy.


Assuntos
Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Nature ; 591(7849): 293-299, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494095

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.


Assuntos
COVID-19/virologia , Furina/metabolismo , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Humanos , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteólise , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Replicação Viral/genética
16.
bioRxiv ; 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32869021

RESUMO

SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site (ΔPRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the ΔPRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the ΔPRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT 50 ) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT 50 titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays. IMPORTANCE: As COVID-19 has impacted the world, understanding how SARS-CoV-2 replicates and causes virulence offers potential pathways to disrupt its disease. By removing the furin cleavage site, we demonstrate the importance of this insertion to SARS-CoV-2 replication and pathogenesis. In addition, the findings with Vero cells indicate the likelihood of cell culture adaptations in virus stocks that can influence reagent generation and interpretation of a wide range of data including neutralization and drug efficacy. Overall, our work highlights the importance of this key motif in SARS-CoV-2 infection and pathogenesis. ARTICLE SUMMARY: A deletion of the furin cleavage site in SARS-CoV-2 amplifies replication in Vero cells, but attenuates replication in respiratory cells and pathogenesis in vivo. Loss of the furin site also reduces susceptibility to neutralization in vitro .

18.
Nat Microbiol ; 4(1): 71-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455471

RESUMO

West Nile virus (WNV), a member of the Flavivirus genus, is a leading cause of viral encephalitis in the United States1. The development of neutralizing antibodies against the flavivirus envelope (E) protein is critical for immunity and vaccine protection2. Previously identified candidate therapeutic mouse and human neutralizing monoclonal antibodies (mAbs) target epitopes within the E domain III lateral ridge and the domain I-II hinge region, respectively3. To explore the neutralizing antibody repertoire elicited by WNV infection for potential therapeutic application, we isolated ten mAbs from WNV-infected individuals. mAb WNV-86 neutralized WNV with a 50% inhibitory concentration of 2 ng ml-1, one of the most potently neutralizing flavivirus-specific antibodies ever isolated. WNV-86 targets an epitope in E domain II, and preferentially recognizes mature virions lacking an uncleaved form of the chaperone protein prM, unlike most flavivirus-specific antibodies4. In vitro selection experiments revealed a neutralization escape mechanism involving a glycan addition to E domain II. Finally, a single dose of WNV-86 administered two days post-infection protected mice from lethal WNV challenge. This study identifies a highly potent human neutralizing mAb with therapeutic potential that targets an epitope preferentially displayed on mature virions.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/prevenção & controle , Vacinas contra o Vírus do Nilo Ocidental/uso terapêutico , Vírus do Nilo Ocidental/imunologia , Aedes , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos/imunologia , Células Vero , Febre do Nilo Ocidental/terapia
19.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355694

RESUMO

Emergent strains of human norovirus seed pandemic waves of disease. These new strains have altered ligand binding and antigenicity characteristics. Study of viral variants isolated from immunosuppressed patients with long-term norovirus infection indicates that initial virus in vivo evolution occurs at the same antigenic sites as in pandemic strains. Here, cellular ligand binding and antigenicity of two cocirculating strains isolated from a patient with long-term norovirus infection were characterized. The isolated GII.4 viruses differed from previous strains and from each other at known blockade antibody epitopes. One strain had a unique sequence in epitope D, including loss of an insertion at residue 394, corresponding to a decreased relative affinity for carbohydrate ligands. Replacement of 394 with alanine or restoration of the contemporary strain epitope D consensus sequence STT improved ligand binding relative affinity. However, monoclonal antibody blockade of binding potency was only gained for the consensus sequence, not by the alanine insertion. In-depth study of unique changes in epitope D indicated that ligand binding, but not antibody blockade of ligand binding, is maintained despite sequence diversity, allowing escape from blockade antibodies without loss of capacity for binding cellular ligands.IMPORTANCE Human norovirus causes ∼20% of all acute gastroenteritis and ∼200,000 deaths per year, primarily in young children. Most epidemic and all pandemic waves of disease over the past 30 years have been caused by type GII.4 human norovirus strains. The capsid sequence of GII.4 strains is changing over time, resulting in viruses with altered ligand and antibody binding characteristics. The carbohydrate binding pocket of these strains does not vary over time. Here, utilizing unique viral sequences, we study how residues in GII.4 epitope D balance the dual roles of variable antibody binding site and cellular ligand binding stabilization domain, demonstrating that amino acid changes in epitope D can result in loss of antibody binding without ablating ligand binding. This flexibility in epitope D likely contributes to GII.4 strain persistence by both allowing escape from antibody-mediated herd immunity and maintenance of cellular ligand binding and infectivity.


Assuntos
Anticorpos Bloqueadores/metabolismo , Infecções por Caliciviridae/imunologia , Proteínas do Capsídeo/genética , Epitopos/imunologia , Mutação INDEL , Norovirus/isolamento & purificação , Anticorpos Antivirais/metabolismo , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Criança , Epitopos/genética , Fezes/virologia , Humanos , Imunidade Coletiva , Ligantes , Norovirus/genética , Norovirus/imunologia , Ligação Proteica
20.
mBio ; 9(3)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789360

RESUMO

Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.


Assuntos
Antígenos Virais/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Caliciviridae/imunologia , Norovirus/imunologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Caliciviridae/química , Caliciviridae/classificação , Caliciviridae/genética , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Quirópteros/virologia , Humanos , Norovirus/química , Norovirus/classificação , Norovirus/genética , Filogenia , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...