Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutagenesis ; 26(6): 795-803, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21811007

RESUMO

Radiotherapy and chemotherapy are effective cancer treatments due to their ability to generate DNA damage. The major lethal lesion is the DNA double-strand break (DSB). Human cells predominantly repair DSBs by non-homologous end joining (NHEJ), which requires Ku70, Ku80, DNA-PKcs, DNA ligase IV and accessory proteins. Repair is initiated by the binding of the Ku heterodimer at the ends of the DSB and this recruits DNA-PKcs, which initiates damage signaling and functions in repair. NHEJ also exists in certain types of bacteria that have dormant phases in their life cycle. The Mycobacterium tuberculosis Ku (Mt-Ku) resembles the DNA-binding domain of human Ku but does not have the N- and C-terminal domains of Ku70/80 that have been implicated in binding mammalian NHEJ repair proteins. The aim of this work was to determine whether Mt-Ku could be used as a tool to bind DSBs in mammalian cells and sensitize cells to DNA damage. We generated a fusion protein (KuEnls) of Mt-Ku, EGFP and a nuclear localization signal that is able to perform bacterial NHEJ and hence bind DSBs. Using transient transfection, we demonstrated that KuEnls is able to bind laser damage in the nucleus of Ku80-deficient cells within 10 sec and remains bound for up to 2 h. The Mt-Ku fusion protein was over-expressed in U2OS cells and this increased the sensitivity of the cells to bleomycin sulfate. Hydrogen peroxide and UV radiation do not predominantly produce DSBs and there was little or no change in sensitivity to these agents. Since in vitro studies were unable to detect binding of Mt-Ku to DNA-PKcs or human Ku70/80, this work suggests that KuEnls sensitizes cells by binding DSBs, preventing human NHEJ. This study indicates that blocking or decreasing the binding of human Ku to DSBs could be a method for enhancing existing cancer treatments.


Assuntos
Antígenos Nucleares/metabolismo , Proteínas de Bactérias/metabolismo , Bleomicina/farmacologia , Núcleo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/metabolismo , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Ligases/metabolismo , DNA Circular/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Autoantígeno Ku , Mamíferos , Plasmídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo
2.
Mutagenesis ; 25(5): 473-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20530153

RESUMO

We previously established an Escherichia coli strain capable of re-circularizing linear plasmid DNA by expressing the Mycobacterium tuberculosis Ku (Mt-Ku) and Mycobacterium tuberculosis ligase D (Mt-LigD) proteins from the E.coli chromosome. Repair was predominately mutagenic due to deletions at the termini. We hypothesized that these deletions could be due to a nuclease activity of Mt-LigD that was previously detected in vitro. Mt-LigD has three domains: an N-terminal polymerase domain (PolDom), a central domain with 3'-phosphoesterase and nuclease activity and a C-terminal ligase domain (LigDom). We generated bacterial strains expressing Mt-Ku and mutant versions of Mt-LigD. Plasmid re-circularization experiments in bacteria showed that the PolDom alone had no re-circularization activity. However, an increase in the total and accurate repair was found when the central domain was deleted. This provides further evidence that this central domain does have nuclease activity that can generate deletions during repair. Deletion of only the PolDom of Mt-LigD resulted in a complete loss of accurate repair and a significant reduction in total repair. This is in agreement with published in vitro work indicating that the PolDom is the major Mt-Ku-binding site. Interestingly, the LigDom alone was able to re-circularize plasmid DNA but only in an Mt-Ku-dependent manner, suggesting a potential second site for Ku-LigD interaction. This work has increased our understanding of the mutagenic repair by Mt-Ku and Mt-LigD and has extended the in vitro biochemical experiments by examining the importance of the Mt-LigD domains during repair in bacteria.


Assuntos
Antígenos Nucleares/metabolismo , Domínio Catalítico , DNA Ligases/química , DNA Ligases/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/enzimologia , Recombinação Genética , Western Blotting , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Autoantígeno Ku , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...