Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(6): 1372-1385, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794181

RESUMO

An engineered nanoporous carbon scaffold (NCS) consisting of a 3-D interconnected 85 nm nanopore network was used here as a model material to investigate the nanoscale transport of liquids as a function of the polarity and magnitude of an applied potential ('electro-imbibition'), all in 1 M KCl solution. A camera was used to track both meniscus formation and meniscus jump, front motion dynamics, and droplet expulsion, while also quantifying the electrocapillary imbibition height (H) as a function of the applied potential of the NCS material. Although no imbibition was seen over a wide range of potentials, at positive potentials (+1.2 V vs. the potential of zero charge (pzc)), imbibition was correlated with carbon surface electro-oxidation, as confirmed by both electrochemistry and post-imbibition surface analysis, with gas evolution (O2, CO2) seen visually only after imbibition was well underway. At negative potentials, vigorous hydrogen evolution reaction was observed at the NCS/KCl solution interface, well before imbibition began at -0.5 Vpzc, proposed to be nucleated by an electrical double layer charging-driven meniscus jump, followed by processes such as Marangoni flow, adsorption induced deformation, and hydrogen pressure driven flow. This study improves the understanding of electrocapillary imbibition at the nanoscale, being highly relevant in a wide range of multidisciplinary practical applications, including in energy storage and conversion devices, energy-efficient desalination, and electrical-integrated nanofluidics design.

2.
J Colloid Interface Sci ; 589: 411-423, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33485249

RESUMO

HYPOTHESIS: The Lucas-Washburn (L-W) equation is the classical theory to describe the dynamics of spontaneous imbibition in single micro-channels and micro-scale porous media. However, for nanoliter droplets imbibition in nanoporous media, the L-W equation may not be suitable, due to the nanoscale liquid-solid interactions, e.g., contact line pinning and capillary condensation. In addition, for an intrinsically hydrophobic nanoporous substrate, spontaneous imbibition of a nanoliter droplet is hypothesized to occur if capillary condensation had occurred internally already. EXPERIMENTS: A nanoporous carbon scaffold was synthesized and used as a model nanoporous medium. A recently-developed micro-injection technique was used to generate a series of nanoliter water droplets (2.8-34 nL); the entire wetting dynamics (i.e., apparent contact angle and droplet volume as a function of time) were observed inside an environmental scanning electron microscope. FINDINGS: The L-W equation does not describe the wetting dynamics of nanoliter water droplets in nanoporous media. A new theoretical model is developed to characterize the corresponding dynamics. It is demonstrated that, even for an intrinsically hydrophobic nanoporous substrate, spontaneous imbibition of a nanoliter droplet can occur if capillary condensation had occurred internally already.

3.
Sci Rep ; 7(1): 4347, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659626

RESUMO

Low-permeability (unconventional) hydrocarbon reservoirs exhibit a complex nanopore structure and micro (µm) -scale variability in composition which control fluid distribution, displacement and transport processes. Conventional methods for characterizing fluid-rock interaction are however typically performed at a macro (mm) -scale on rock sample surfaces. In this work, innovative methods for the quantification of micro-scale variations in wettability and fluid distribution in a low-permeability oil reservoir was enabled by using an environmental scanning electron microscope. Live imaging of controlled water condensation/evaporation experiments allowed micro-droplet contact angles to be evaluated, while imaging combined with x-ray mapping of cryogenically frozen samples facilitated the evaluation of oil and water micro-droplet contact angles after successive fluid injection. For the first time, live imaging of fluids injected through a micro-injection system has enabled quantification of sessile and dynamic micro-droplet contact angles. Application of these combined methods has revealed dramatic spatial changes in fluid contact angles at the micro-scale, calling into question the applicability of macro-scale observations of fluid-rock interaction.

4.
J Microsc ; 265(1): 60-72, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596097

RESUMO

Samples of Late Devonian/Early Mississippian New Albany Shale from the Illinois Basin, having maturities ranging from early mature to postmature, were analysed using micro-Fourier transform infrared (FTIR) spectroscopy, ImageJ processing software and scanning electron microscopic X-ray spectroscopy to explore the distribution, connectivity and chemical composition of organic matter, clay minerals, carbonate minerals and quartz, and to further test the applicability of micro-FTIR mapping to study shale heterogeneity. Each sample was analysed in planes parallel and perpendicular to the bedding to investigate anisotropy in component distribution, with a possible implication for better understanding anisotropy in porosity and permeability in organic-matter-rich shales. Our results show that for low-maturity samples, organic matter is better connected in the plane parallel to the bedding than in the plane perpendicular to the bedding. Organic matter connectivity decreases with increasing maturity as a result of kerogen transformation. Clay minerals are very well connected in both planes, whereas carbonate minerals are not abundant whilst dominantly isolated in most samples, independent of maturity. This study demonstrates that micro-FTIR mapping is a valuable tool for studying shale heterogeneity on a micrometre to millimetre scale that becomes even more powerful in combination with scanning electron microscopy techniques, which extend observations to a nanometre scale. However, to obtain meaningful and comparable results, micro-FTIR mapping requires very careful standardization, precise selection of peak heights/areas and mapping conditions (such as aperture size, scan numbers, resolution, etc.) well suited for the analysed samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...