Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 148: 70-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24262528

RESUMO

Although dietary fiber provides health benefits, most Western populations have insufficient intake. Surimi seafood is not currently fortified with dietary fiber, nor have the effects of fiber fortification on physicochemical properties of surimi been thoroughly studied. In the present study, Alaska pollock surimi was fortified with 0-8 g/100 g of long-chain powdered cellulose as a source of dietary fiber. The protein/water concentrations in surimi were kept constant by adding an inert filler, silicon dioxide in inverse concentrations to the fiber fortification. Fiber-fortified surimi gels were set at 90 °C. The objectives were to determine (1) textural and colour properties; (2) heat-induced gelation (dynamic rheology); and (3) protein endothermic transitions (differential scanning calorimetry) of surimi formulated with constant protein/water, but variable fiber content. Fiber fortification up to 6 g/100 g improved (P<0.05) texture and colour although some decline occurred with 8 g/100g of fiber. Dynamic rheology correlated with texture and showed large increase in gel elasticity, indicating enhanced thermal gelation of surimi. Differential scanning calorimetry showed that fiber fortification did not interfere with thermal transitions of surimi myosin and actin. Long-chain fiber probably traps water physically, which is stabilized by chemical bonding with protein within surimi gel matrix. Based on the present study, it is suggested that the fiber-protein interaction is mediated by water and is physicochemical in nature.


Assuntos
Fibras na Dieta/análise , Produtos Pesqueiros/análise , Alimentos Fortificados/análise , Géis/química , Animais , Varredura Diferencial de Calorimetria , Aditivos Alimentares/química , Gadiformes , Reologia
2.
Food Chem ; 141(1): 201-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23768348

RESUMO

Most Western populations have insufficient intake of fibre and ω-3 polyunsaturated fatty acids (PUFAs), while sodium intake greatly exceeds the recommended maximum. Surimi seafood is not currently fortified with these nutraceutical ingredients. Alaska pollock surimi seafood was developed with salt substitute and fortified with either 6g/100g of fibre or 10 g/100g of ω-3 oil (flax:algae:menhaden, 8:1:1) or fibre+ω-3 oil (6g/100g of fibre+10 g/100g of ω-3 oil). The objective was to determine effects of the dietary fortification on physicochemical properties of surimi. Fortification with either dietary fibre or ω-3 oil alone or in combination enhanced (P<0.05) rheological and textural characteristics. The combined fortification had a synergistic effect on rheological properties. This indicates greater gelation of surimi in the presence of fibre+ω-3 oil, suggesting their interaction with surimi myofibrillar proteins. Fibre results in protein dehydration increasing protein concentration; while oil is immobilised by protein filling void spaces in the gel matrix. Differential scanning calorimetry showed that fibre and ω-3 oil did not interfere with normal denaturation of surimi proteins. Colour properties were only slightly affected (P<0.05). Fortification of surimi with fibre and ω-3 oil resulted in a quality product that could be useful in developing surimi products with nutritional benefits.


Assuntos
Fibras na Dieta/análise , Ácidos Graxos Ômega-3/química , Produtos Pesqueiros/análise , Géis/química , Animais , Proteínas de Peixes/química , Manipulação de Alimentos , Gadiformes , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...