Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 23(1): 61, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303880

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease with limited treatment options. A phase 2 trial (NCT01766817) showed that twice-daily treatment with BMS-986020, a lysophosphatidic acid receptor 1 (LPA1) antagonist, significantly decreased the slope of forced vital capacity (FVC) decline over 26 weeks compared with placebo in patients with IPF. This analysis aimed to better understand the impact of LPA1 antagonism on extracellular matrix (ECM)-neoepitope biomarkers and lung function through a post hoc analysis of the phase 2 study, along with an in vitro fibrogenesis model. METHODS: Serum levels of nine ECM-neoepitope biomarkers were measured in patients with IPF. The association of biomarkers with baseline and change from baseline FVC and quantitative lung fibrosis as measured with high-resolution computed tomography, and differences between treatment arms using linear mixed models, were assessed. The Scar-in-a-Jar in vitro fibrogenesis model was used to further elucidate the antifibrotic mechanism of BMS-986020. RESULTS: In 140 patients with IPF, baseline ECM-neoepitope biomarker levels did not predict FVC progression but was significantly correlated with baseline FVC and lung fibrosis measurements. Most serum ECM-neoepitope biomarker levels were significantly reduced following BMS-986020 treatment compared with placebo, and several of the reductions correlated with FVC and/or lung fibrosis improvement. In the Scar-in-a-Jar in vitro model, BMS-986020 potently inhibited LPA1-induced fibrogenesis. CONCLUSIONS: BMS-986020 reduced serum ECM-neoepitope biomarkers, which were previously associated with IPF prognosis. In vitro, LPA promoted fibrogenesis, which was LPA1 dependent and inhibited by BMS-986020. Together these data elucidate a novel antifibrotic mechanism of action for pharmacological LPA1 blockade. Trial registration ClinicalTrials.gov identifier: NCT01766817; First posted: January 11, 2013; https://clinicaltrials.gov/ct2/show/NCT01766817 .


Assuntos
Colágeno/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Medicamentos para o Sistema Respiratório/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Colágeno/metabolismo , Epitopos/sangue , Feminino , Humanos , Fibrose Pulmonar Idiopática/patologia , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Capacidade Vital/efeitos dos fármacos
2.
JHEP Rep ; 4(1): 100392, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34977519

RESUMO

BACKGROUND & AIMS: Increased serum bile acids (BAs) have been observed in patients with non-alcoholic steatohepatitis (NASH). Pegbelfermin (PGBF), a polyethylene glycol-modified (PEGylated) analogue of human fibroblast growth factor 21 (FGF21), significantly decreased hepatic steatosis and improved fibrosis biomarkers and metabolic parameters in patients with NASH in a phase IIa trial. This exploratory analysis evaluated the effect of PGBF on serum BAs and explored potential underlying mechanisms. METHODS: Serum BAs and 7α-hydroxy-4-cholesten-3-one (C4) were measured by HPLC-mass spectrometry (MS) using serum collected in studies of patients with NASH (NCT02413372) and in overweight/obese adults (NCT03198182) who received PGBF. Stool samples were collected in NCT03198182 to evaluate faecal BAs by liquid chromatography (LC)-MS and the faecal microbiome by metagenetic and metatranscriptomic analyses. RESULTS: Significant reductions from baseline in serum concentrations of the secondary BA, deoxycholic acid (DCA), and conjugates, were observed with PGBF, but not placebo, in patients with NASH; primary BA concentrations did not significantly change in any arm. Similar effects of PGBF on BAs were observed in overweight/obese adults, allowing for an evaluation of the effects of PGBF on the faecal microbiome and BAs. Faecal transcriptomic analysis showed that the relative abundance of the gene encoding choloylglycine hydrolase, a critical enzyme for secondary BA synthesis, was reduced after PGBF, but not placebo, administration. Furthermore, a trend of reduction in faecal secondary BAs was observed. CONCLUSIONS: PGBF selectively reduced serum concentrations of DCA and conjugates in patients with NASH and in healthy overweight/obese adults. Reduced choloylglycine hydrolase gene expression and decreased faecal secondary BA levels suggest a potential role for PGBF in modulating secondary BA synthesis by gut microbiome. The clinical significance of DCA reduction post-PGBF treatment warrants further investigation. LAY SUMMARY: Pegbelfermin (PGBF) is a hormone that is currently being studied in clinical trials for the treatment of non-alcoholic fatty liver disease. In this study, we show that PGBF treatment can reduce bile acids that have previously been shown to have toxic effects on the liver. Additional studies to understand how PGBF regulates bile acids may provide additional information about its potential use as a treatment for fatty liver.

3.
Rheumatology (Oxford) ; 61(4): 1717-1727, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289031

RESUMO

OBJECTIVE: SSc is a rheumatic autoimmune disease affecting roughly 20 000 people worldwide and characterized by excessive collagen accumulation in the skin and internal organs. Despite the high morbidity and mortality associated with SSc, there are no approved disease-modifying agents. Our objective in this study was to explore transcriptomic and model-based drug discovery approaches for SSc. METHODS: In this study, we explored the molecular basis for SSc pathogenesis in a well-studied mouse model of scleroderma. We profiled the skin and lung transcriptomes of mice at multiple timepoints, analysing the differential gene expression that underscores the development and resolution of bleomycin-induced fibrosis. RESULTS: We observed shared expression signatures of upregulation and downregulation in fibrotic skin and lung tissue, and observed significant upregulation of key pro-fibrotic genes including GDF15, Saa3, Cxcl10, Spp1 and Timp1. To identify changes in gene expression in responses to anti-fibrotic therapy, we assessed the effect of TGF-ß pathway inhibition via oral ALK5 (TGF-ß receptor I) inhibitor SB525334 and observed a time-lagged response in the lung relative to skin. We also implemented a machine learning algorithm that showed promise at predicting lung function using transcriptome data from both skin and lung biopsies. CONCLUSION: This study provides the most comprehensive look at the gene expression dynamics of an animal model of SSc to date, provides a rich dataset for future comparative fibrotic disease research, and helps refine our understanding of pathways at work during SSc pathogenesis and intervention.


Assuntos
Bleomicina , Escleroderma Sistêmico , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Perfilação da Expressão Gênica , Humanos , Pulmão/patologia , Camundongos , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Pele/patologia
4.
Hepatol Commun ; 5(5): 760-773, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027267

RESUMO

Nonalcoholic steatohepatitis (NASH) is a major cause of liver-related morbidity and mortality worldwide. Liver fibrosis stage, a key component of NASH, has been linked to the risk of mortality and liver-related clinical outcomes. Currently there are no validated noninvasive diagnostics that can differentiate between fibrosis stages in patients with NASH; many existing tests do not reflect underlying disease pathophysiology. Noninvasive biomarkers are needed to identify patients at high-risk of NASH with advanced fibrosis. This was a retrospective study of patients with histologically proven NASH with fibrosis stages 0-4. The SOMAscan proteomics platform was used to quantify 1,305 serum proteins in a discovery cohort (n = 113). In patients with advanced (stages 3-4) versus early fibrosis (stages 0-2), 97 proteins with diverse biological functions were differentially expressed. Next, fibrosis-stage classification models were explored using a machine learning-based approach to prioritize the biomarkers for further evaluation. A four-protein model differentiated patients with stage 0-1 versus stage 2-4 fibrosis (area under the receiver operating characteristic curve [AUROC] = 0.74), while a 12-protein classifier differentiated advanced versus early fibrosis (AUROC = 0.83). Subsequently, the model's performance was validated in two independent cohorts (n = 71 and n = 32) with similar results (AUROC = 0.74-0.78). Our advanced fibrosis model performed similarly to or better than Fibrosis-4 index, aspartate aminotransferase-to-platelet ratio index, and nonalcoholic fatty liver disease (NAFLD) fibrosis score-based models for all three cohorts. Conclusion: A SOMAscan proteomics-based exploratory classifier for advanced fibrosis, consisting of biomarkers that reflect the complexity of NASH pathophysiology, demonstrated similar performance in independent validation cohorts and performed similarly or better than Fibrosis-4 index, aspartate aminotransferase-to-platelet ratio index, and NAFLD fibrosis score. Further studies are warranted to evaluate the clinical utility of these biomarker panels in patients with NAFLD.

5.
Epigenetics Chromatin ; 13(1): 39, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008446

RESUMO

BACKGROUND: Partially methylated domains (PMDs) are a hallmark of epigenomes in reproducible and specific biological contexts, including cancer cells, the placenta, and cultured cell lines. Existing methods for deciding whether PMDs exist in a sample, as well as their identification, are few, often tailored to specific biological questions, and require high coverage samples for accurate identification. RESULTS: In this study, we outline a set of axioms that take a step towards a functional definition for PMDs, describe an improved method for comparable PMD detection across samples with substantially differing sequencing depths, and refine the decision criteria for whether a sample contains PMDs using a data-driven approach. Applying our method to 267 methylomes from 7 species, we corroborated recent results regarding the general association between replication timing and PMD state, and report identification of several reproducibly "escapee" genes within late-replicating domains that escape the reduced expression and hypomethylation of their immediate genomic neighborhood. We also explored the discordant PMD state of orthologous genes between human and mouse, and observed a directional association of PMD state with gene expression and local gene density. CONCLUSIONS: Our improved method makes low sequencing depth, population-level studies of PMD variation possible and our results further refine the model of PMD formation as one where sequence context and regional epigenomic features both play a role in gradual genome-wide hypomethylation.


Assuntos
Metilação de DNA , Epigenoma , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Placenta/metabolismo , Gravidez , Especificidade da Espécie
6.
Mol Cell ; 77(6): 1350-1364.e6, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31999955

RESUMO

DNA methylation of enhancers is dynamic, cell-type specific, and vital for cell fate progression. However, current models inadequately define its role within the hierarchy of gene regulation. Analysis of independent datasets shows an unanticipated overlap between DNA methylation and chromatin accessibility at enhancers of steady-state stem cells, suggesting that these two opposing features might exist concurrently. To define their temporal relationship, we developed ATAC-Me, which probes accessibility and methylation from single DNA library preparations. We identified waves of accessibility occurring rapidly across thousands of myeloid enhancers in a monocyte-to-macrophage cell fate model. Prolonged methylation states were observed at a majority of these sites, while transcription of nearby genes tracked closely with accessibility. ATAC-Me uncovers a significant disconnect between chromatin accessibility, DNA methylation status, and gene activity. This unexpected observation highlights the value of ATAC-Me in constructing precise molecular timelines for understanding the role of DNA methylation in gene regulation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequências Reguladoras de Ácido Nucleico , Sítios de Ligação , Reprogramação Celular , Redes Reguladoras de Genes , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo
7.
Mol Biol Evol ; 34(7): 1702-1712, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379409

RESUMO

The placental epigenome plays a vital role in regulating mammalian growth and development. Aberrations in placental DNA methylation are linked to several disease states, including intrauterine growth restriction and preeclampsia. Studying the evolution and development of the placental epigenome is critical to understanding the origin and progression of such diseases. Although high-resolution studies have found substantial variation between placental methylomes of different species, the nature of methylome variation has yet to be characterized within any individual species. We conducted a study of placental DNA methylation at high resolution in multiple strains and closely related species of house mice (Mus musculus musculus, Mus m. domesticus, and M. spretus), across developmental timepoints (embryonic days 15-18), and between two distinct layers (labyrinthine transport and junctional endocrine). We observed substantial genome-wide methylation heterogeneity in mouse placenta compared with other differentiated tissues. Species-specific methylation profiles were concentrated in retrotransposon subfamilies, specifically RLTR10 and RLTR20 subfamilies. Regulatory regions such as gene promoters and CpG islands displayed cross-species conservation, but showed strong differences between layers and developmental timepoints. Partially methylated domains exist in the mouse placenta and widen during development. Taken together, our results characterize the mouse placental methylome as a highly heterogeneous and deregulated landscape globally, intermixed with actively regulated promoter and retrotransposon sequences.


Assuntos
Metilação de DNA , Placenta/embriologia , Animais , Ilhas de CpG , Epigênese Genética , Feminino , Genoma , Camundongos , Especificidade de Órgãos , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...