RESUMO
Calreticulin (CRT) is a calcium-binding protein that participates in several cellular processes including the control of protein folding and homeostasis of Ca2+. Its folding, stability and functions are strongly controlled by the presence of Ca2+. The oligomerization state of CRT is also relevant for its functions. We studied the thermal transitions of monomers and oligomers of CRT by differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) in the presence and absence of Ca2+. We found three and two components for the calorimetric transition in the presence and absence of Ca2+ respectively. The presence of several components was also supported by CD and FTIR spectra acquired as a function of the temperature. The difference between the heat capacity of the native and the unfolded state strongly suggests that interactions between protein domains also contribute to the heat uptake in a calorimetry experiment. We found that once unfolded at high temperature the process is reversible and the native state can be recovered upon cooling only in the absence of Ca2+. We also propose a new simple method to obtain pure CRT oligomers.
Assuntos
Calreticulina/química , Cálcio/química , Varredura Diferencial de Calorimetria , Calreticulina/genética , Dicroísmo Circular , Conformação Proteica , Desdobramento de Proteína , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , TermodinâmicaRESUMO
Protein arginylation mediated by arginyl-tRNA protein transferase is a post-translational modification that occurs widely in biology, it has been shown to regulate protein and properties and functions. Post-translational arginylation is critical for embryogenesis, cardiovascular development and angiogenesis but the molecular effects of proteins arginylated in vivo are largely unknown. In the present study, we demonstrate that arginylation reduces CRT (calreticulin) thermostability and induces a greater degree of dimerization and oligomerization. R-CRT (arginylated calreticulin) forms disulfide-bridged dimers that are increased in low Ca(2+) conditions at physiological temperatures, a similar condition to the cellular environment that it required for arginylation of CRT. Moreover, R-CRT self-oligomerizes through non-covalent interactions that are enhanced at temperatures above 40 °C, condition that mimics the heat shock treatment where R-CRT is the only isoespecies of CRT that associates in cells to SGs (stress granules). We show that in cells lacking CRT the scaffolding of larger SGs is impaired; the transfection with CRT (hence R-CRT expression) restores SGs assembly whereas the transfection with CRT mutated in Cys146 does not. Thus, R-CRT disulfide-bridged dimers (through Cys146) are essential for the scaffolding of larger SGs under heat shock, although these dimers are not required for R-CRT association to SGs. The alteration in SGs assembly is critical for the normal cellular recover of cells after heat induced stress. We conclude that R-CRT is emerging as a novel protein that has an impact on the regulation of SGs scaffolding and cell survival.
Assuntos
Arginina/química , Calreticulina/química , Calreticulina/metabolismo , Proteínas de Choque Térmico/metabolismo , Aminoaciltransferases , Animais , Apoptose , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Dimerização , Resposta ao Choque Térmico , Camundongos , Processamento de Proteína Pós-TraducionalRESUMO
Post-translational arginylation consists of the covalent union of an arginine residue to a Glu, Asp, or Cys amino acid at the N-terminal position of proteins. This reaction is catalyzed by the enzyme arginyl-tRNA protein transferase. Using mass spectrometry, we have recently demonstrated in vitro the post-translational incorporation of arginine into the calcium-binding protein calreticulin (CRT). To further study arginylated CRT we raised an antibody against the peptide (RDPAIYFK) that contains an arginine followed by the first 7 N-terminal amino acids of mature rat CRT. This antibody specifically recognizes CRT obtained from rat soluble fraction that was arginylated in vitro and also recognizes endogenous arginylated CRT from NIH 3T3 cells in culture, indicating that CRT arginylation takes place in living cells. Using this antibody we found that arginylation of CRT is Ca2+-regulated. In vitro and in NIH 3T3 cells in culture, the level of arginylated CRT increased with the addition of a Ca2+ chelator to the medium, whereas a decreased arginine incorporation into CRT was found in the presence of Ca2+. The arginylated CRT was observed in the cytosol, in contrast to the non-arginylated CRT that is in the endoplasmic reticulum. Under stress conditions, arginylated CRT was found associated to stress granules. These results suggest that CRT arginylation occurs in the cytosolic pool of mature CRT (defined by an Asp acid N-terminal) that is probably retrotranslocated from the endoplasmic reticulum.