Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(1): 233-247, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28612961

RESUMO

Crop-wild hybridization occurs in numerous plant species and could alter the genetic structure and evolutionary dynamics of wild populations. Studying crop-derived alleles in wild populations is also relevant to assessing/mitigating the risks associated with transgene escape. To date, crop-wild hybridization has generally been examined via short-term studies, typically within a single generation, focusing on few traits or genetic markers. Little is known about patterns of selection on crop-derived alleles over multiple generations, particularly at a genome-wide scale. Here, we documented patterns of natural selection in an experimental crop × wild sunflower population that was allowed to evolve under natural conditions for two generations at two locations. Allele frequencies at a genome-wide collection of SNPs were tracked across generations, and a common garden experiment was conducted to compare trait means between generations. These data allowed us to identify instances of selection on crop-derived alleles/traits and, in concert with QTL mapping results, test for congruence between our genotypic and phenotypic results. We found that natural selection overwhelmingly favours wild alleles and phenotypes. However, crop alleles in certain genomic regions can be favoured, and these changes often occurred in parallel across locations. We did not, however, consistently observe close agreement between our genotypic and phenotypic results. For example, when a trait evolved towards the wild phenotype, wild QTL alleles associated with that trait did not consistently increase in frequency. We discuss these results in the context of crop allele introgression into wild populations and implications for the management of GM crops.


Assuntos
Evolução Biológica , Produtos Agrícolas/genética , Frequência do Gene/genética , Genoma de Planta , Helianthus/genética , Hibridização Genética , Mapeamento Cromossômico , Domesticação , Genótipo , Fenótipo , Locos de Características Quantitativas/genética
2.
PLoS One ; 9(7): e102717, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048600

RESUMO

Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.


Assuntos
Produtos Agrícolas/genética , Desidratação/genética , Helianthus/genética , Hibridização Genética , Seleção Genética , Meio Ambiente , Fenótipo , Locos de Características Quantitativas
3.
BMC Plant Biol ; 14: 66, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24641198

RESUMO

BACKGROUND: Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) × wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. RESULTS: Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. CONCLUSIONS: This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations.


Assuntos
Brassica/genética , Brassica/fisiologia , Locos de Características Quantitativas/fisiologia , Genótipo , Fenótipo , Locos de Características Quantitativas/genética
4.
New Phytol ; 201(2): 657-669, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26012723

RESUMO

Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing.


Assuntos
Brassica rapa/genética , Meio Ambiente , Locos de Características Quantitativas , Brassica rapa/anatomia & histologia , Brassica rapa/crescimento & desenvolvimento , Genes de Plantas , Endogamia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Recombinação Genética , Reprodução , Fatores de Tempo
5.
Genetics ; 186(4): 1451-65, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837996

RESUMO

Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ∼80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL×QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL×QTL epistasis for floral traits were environment dependent.


Assuntos
Meio Ambiente , Flores/genética , Locos de Características Quantitativas , Epistasia Genética , Flores/crescimento & desenvolvimento
6.
Mol Ecol ; 19(16): 3477-88, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20637050

RESUMO

Crop-wild hybridization has been documented in many cultivated species, but the ecological and genetic factors that influence the likelihood or rate that cultivar alleles will introgress into wild populations are poorly understood. Seed predation is one factor that could mitigate the spread of otherwise advantageous cultivar alleles into the wild by reducing seedling recruitment of crop-like individuals in hybrid populations. Seed predation has previously been linked to several seed characters that differ between cultivated and wild sunflower, such as seed size and oil content. In this study, seed morphological and nutritional characters were measured in a segregating population of sunflower crop-wild hybrids and wild and cultivated lines. Seed predation rates among lines were then assessed in the field. The relationship between seed predation and seed characters was investigated and quantitative trait loci (QTL) were mapped for all traits. There was no effect of seed type (hybrid vs. parents) on seed predation, although a trend toward more early predation of wild seeds was observed. Within the hybrids, seed predators preferred seeds that contained more oil and energy but were lower in fibre. The relationship between seed predation and oil content was supported by co-localized QTL for these traits on one linkage group. These results suggest that oil content may be a more important determinant of seed predation than seed size and provide molecular genetic evidence for this relationship. The cultivar allele was also found to increase predation at all QTL, indicating that post-dispersal seed predation may mitigate the spread of cultivar alleles into wild populations.


Assuntos
Quimera/genética , Helianthus/genética , Locos de Características Quantitativas , Sementes/genética , Alelos , Mapeamento Cromossômico , Variação Genética , Hibridização Genética , Fenótipo , Óleos de Plantas/análise , Sementes/química
7.
New Phytol ; 184(4): 828-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19656303

RESUMO

*Introgression of cultivar alleles into wild plant populations via crop-wild hybridization is primarily governed by their fitness effects as well as those of linked loci. The fitness of crop-wild hybrids is often dependent on environmental factors, but less is understood about how aspects of the environment affect individual cultivar alleles. *This study investigated the effects of naturally occurring herbivory on patterns of phenotypic selection and the genetic architecture of plant-herbivore interactions in an experimental sunflower crop-wild hybrid population in two locales. *Phenotypic selection analyses suggested that cultivar alleles conferring increased size were generally favored, but at one site cultivar-like flowering time was favored only if three types of herbivory were included in the selection model. Quantitative trait locus (QTL) mapping identified three regions in which the cultivar allele conferred a selective advantage for a number of co-localized traits. Quantitative trait loci for several measures of insect herbivory were detected and, although the cultivar allele increased herbivory damage at the majority of these QTLs, they rarely colocalized with advantageous cultivar alleles for morphological traits. *These results suggest that a subset of cultivar traits/alleles are advantageous in natural environments but that herbivory may mitigate the selective advantage of some cultivar alleles.


Assuntos
Genes de Plantas , Aptidão Genética , Helianthus/genética , Hibridização Genética , Mariposas , Doenças das Plantas/genética , Seleção Genética , Alelos , Animais , Mapeamento Cromossômico , Produtos Agrícolas/genética , Flores , Fenótipo , Locos de Características Quantitativas
8.
Plant Cell Environ ; 32(10): 1297-309, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19453482

RESUMO

The ratio of red to far-red light (R : FR) experienced by seeds during maturation affects germination, but the genetic regulation of this effect is poorly understood. In Arabidopsis thaliana, responses to R : FR are governed by five phytochrome photoreceptors, PHYA-PHYE. PHYA, PHYB and PHYE mediate germination, but their roles in germination response to the seed maturation environment are largely unknown. Seeds of A. thaliana phytochrome mutants and natural accessions were matured in a factorial combination of cold (16 degrees C) and warm (24 degrees C) temperatures and high (R : FR = 1) and low (R : FR = 0.6) R : FR environments, resembling sunlight and foliar shade, respectively. Germination was observed in resulting seeds. All five phytochromes mediated germination responses to seed maturation temperature and/or R : FR environment. PHYA suppressed germination in seeds matured under cold temperature, and PHYB promoted germination under the same conditions. PHYD and PHYE promoted germination of seeds matured under warm temperature, but this effect diminished when seeds matured under reduced R : FR. The A. thaliana natural accessions exhibited interesting variation in germination responses to the experimental conditions. Our results suggest that the role of individual PHY loci in regulating plant responses to R : FR varies depending on temperature and provide novel insights into the genetic basis of maternal effects.


Assuntos
Germinação/fisiologia , Luz , Fitocromo/fisiologia , Sementes/fisiologia , Temperatura , Arabidopsis/genética , Arabidopsis/fisiologia , Genótipo , Mutação , Fenótipo , Fitocromo/genética
9.
New Phytol ; 176(4): 874-882, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17822398

RESUMO

Phenotypic plasticity, the ability of a genotype to express different phenotypes across environments, is an adaptive strategy expected to evolve in heterogeneous environments. One widely held hypothesis is that the evolutionary benefits of plasticity are reduced by its costs, but when compared with the number of traits tested, the evidence for costs is limited. Selection gradients were calculated for traits and trait plasticities to test for costs of plasticity to density in a field study using recombinant inbred lines (RILs) of Brassica rapa. Significant costs of putatively adaptive plasticity were found in three out of six measured traits. For one trait, petiole length, a cost of plasticity was detected in both environments tested; such global costs are expected to more strongly constrain the evolution of plasticity than local costs expressed in a single environment. These results, in combination with evidence from studies in segregating progenies of Arabidopsis thaliana, suggest that the potential for genetic costs of plasticity exists in natural populations. Detection of costs in previous studies may have been limited because historical selection has purged genotypes with costly plasticity, and experimental conditions often lack environmental stresses.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/genética , Flores/crescimento & desenvolvimento , Variação Genética , Folhas de Planta/crescimento & desenvolvimento , Densidade Demográfica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...