Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 112(24): 5418-28, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18491852

RESUMO

The C2H4NO(+) system has been examined by means of quantum chemical calculations using the G2 and G3B3 approaches and tandem mass spectrometry experiments. Theoretical investigation of the C2H4NO(+) potential-energy surface includes 19 stable C2H4NO(+) structures and a large set of their possible interconnections. These computations provide insights for the understanding of the (i) addition of the nitrosonium cation NO(+) to the ethylene molecule, (ii) skeletal rearrangements evidenced in previous experimental studies on comparable systems, and (iii) experimental identification of new C2H4NO(+) structures. It is predicted from computation that gas-phase nitrosation of ethylene may produce C2H4(*)NO(+) adducts, the most stable structure of which is a pi-complex, 1, stabilized by ca. 65 kJ/mol with respect to its separated components. This complex was produced in the gas phase by a transnitrosation process involving as reactant a complex between water and NO(+) (H2O.NO(+)) and the ethylene molecule and fully characterized by collisional experiments. Among the other C 2H 4NO (+) structures predicted by theory to be protected against dissociation or isomerization by significant energy barriers, five were also experimentally identified. These finding include structures CH3CHNO(+) (5), CH 3CNOH (+) ( 8), CH3NHCO(+) (18), CH3NCOH(+) (19), and an ion/neutral complex CH2O...HCNH(+) (12).


Assuntos
Etilenos/química , Gases/química , Óxido Nítrico/química , Modelos Moleculares , Conformação Molecular , Nitrosação , Estereoisomerismo , Propriedades de Superfície
2.
J Am Soc Mass Spectrom ; 19(1): 126-37, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18063384

RESUMO

The isomerization process between ionized phenol and ionized cyclohexadienone is studied by performing ion/molecule reactions with several alkyl nitrites in a hexapole collision cell inserted in a six-sector mass spectrometer. The distinction between both isomeric species is readily achieved on the basis of the completely different reactivity patterns observed for them in subsequent reactions. When reacting with alkyl nitrite, ionized phenol undergoes two competitive reactions corresponding to the formal radical substitution of the hydroxylic hydrogen atom by respectively (i) the nitrosyl radical (m/z 123) and (ii) an alkoxyl radical (m/z 138 if alkyl=ethyl). Both reactions were theoretically demonstrated by density functional theory calculations [B3LYP/6-311++G(d,p)+ZPE] to involve hydrogen-bridged radical cations as key intermediates. The ion/molecule reaction products detected starting from ionized cyclohexadienone as the mass-selected ions arise from *OAlkyl, *OH, and NO2* radical additions. The occurrence of a spontaneous ring-opening of cyclohexadienone radical ion into a distonic species is suggested to account for the observed ion/molecule reaction products. We also demonstrated that ionized cyclohexadienone is partly isomerized during a proton-transfer catalysis process into ionized phenol inside the Hcell with ethyl nitrite as the base. The molecular ions of phenol generated in such conditions consecutively undergo reactions producing m/z 123 and 138 radical cations. The proposed mechanism is supported by results of quantum chemical calculations.

3.
Eur J Mass Spectrom (Chichester) ; 13(6): 385-95, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18417759

RESUMO

Ion-molecule reactions involving methyl isocyanide and methyl cyanide have been performed in a new rf-only hexapole collision cell inserted in a large-scale tandem mass spectrometer. Beside protonation processes, N-methyl cyanogen ions (CH(3)N(+)CCN) and 1-methyleneiminium-1- ethylenium ions (CH(2)CN(+)CH(2)) have been produced in high yield and fully characterized by high-energy collisional activation. The unimolecular chemistry of the molecular ions of caffeine (1,3,7-trimethyl xanthine) has been revisited on the basis of these new results.

4.
J Am Soc Mass Spectrom ; 17(6): 807-814, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16603373

RESUMO

By using a combination of mass spectrometric methodologies and density functional theory calculations [DFT/B3LYP/6-311 ++ G(d, p)], it is proposed that the decarboxylation of metastable methyl benzoate molecular ions occurs via distonic and ion-neutral complex (INC) intermediates. The same INC involving a complex between the benzyl radical and protonated carbon dioxide is also generated upon decarboxylation of metastable phenylacetic acid molecular ions. Internal proton transfer within the INC produces in fine a mixture of toluene and isotoluene radical cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...