Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23847, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903795

RESUMO

Defective interfering particles arise spontaneously during a viral infection as mutants lacking essential parts of the viral genome. Their ability to replicate in the presence of the wild-type (WT) virus (at the expense of viable viral particles) is mimicked and exploited by therapeutic interfering particles. We propose a strategy for the design of therapeutic interfering RNAs (tiRNAs) against positive-sense single-stranded RNA viruses that assemble via packaging signal-mediated assembly. These tiRNAs contain both an optimised version of the virus assembly manual that is encoded by multiple dispersed RNA packaging signals and a replication signal for viral polymerase, but lack any protein coding information. We use an intracellular model for hepatitis C viral (HCV) infection that captures key aspects of the competition dynamics between tiRNAs and viral genomes for virally produced capsid protein and polymerase. We show that only a small increase in the assembly and replication efficiency of the tiRNAs compared with WT virus is required in order to achieve a treatment efficacy greater than 99%. This demonstrates that the proposed tiRNA design could be a promising treatment option for RNA viral infections.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Modelos Teóricos , Vírion/química , Montagem de Vírus , Replicação Viral , Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Humanos , RNA Viral/química , RNA Viral/genética , RNA Viral/uso terapêutico , Vírion/genética
2.
PLoS One ; 16(5): e0250227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951035

RESUMO

Realistic evolutionary fitness landscapes are notoriously difficult to construct. A recent cutting-edge model of virus assembly consists of a dodecahedral capsid with 12 corresponding packaging signals in three affinity bands. This whole genome/phenotype space consisting of 312 genomes has been explored via computationally expensive stochastic assembly models, giving a fitness landscape in terms of the assembly efficiency. Using latest machine-learning techniques by establishing a neural network, we show that the intensive computation can be short-circuited in a matter of minutes to astounding accuracy.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Montagem de Vírus , Mutação , Fenótipo
3.
Proc Math Phys Eng Sci ; 472(2185): 20150504, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26997889

RESUMO

E8 is prominent in mathematics and theoretical physics, and is generally viewed as an exceptional symmetry in an eight-dimensional (8D) space very different from the space we inhabit; for instance, the Lie group E8 features heavily in 10D superstring theory. Contrary to that point of view, here we show that the E8 root system can in fact be constructed from the icosahedron alone and can thus be viewed purely in terms of 3D geometry. The 240 roots of E8 arise in the 8D Clifford algebra of 3D space as a double cover of the 120 elements of the icosahedral group, generated by the root system H3. As a by-product, by restricting to even products of root vectors (spinors) in the 4D even subalgebra of the Clifford algebra, one can show that each 3D root system induces a root system in 4D, which turn out to also be exactly the exceptional 4D root systems. The spinorial point of view explains their existence as well as their unusual automorphism groups. This spinorial approach thus in fact allows one to construct all exceptional root systems within the geometry of three dimensions, which opens up a novel interpretation of these phenomena in terms of spinorial geometry.

4.
Acta Crystallogr A Found Adv ; 70(Pt 2): 162-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24572317

RESUMO

The principle of affine symmetry is applied here to the nested fullerene cages (carbon onions) that arise in the context of carbon chemistry. Previous work on affine extensions of the icosahedral group has revealed a new organizational principle in virus structure and assembly. This group-theoretic framework is adapted here to the physical requirements dictated by carbon chemistry, and it is shown that mathematical models for carbon onions can be derived within this affine symmetry approach. This suggests the applicability of affine symmetry in a wider context in nature, as well as offering a novel perspective on the geometric principles underpinning carbon chemistry.


Assuntos
Carbono/química , Fulerenos/química , Modelos Moleculares , Vírus/química , Cristalização
5.
Acta Crystallogr A ; 69(Pt 6): 592-602, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24132220

RESUMO

This paper shows how regular convex 4-polytopes - the analogues of the Platonic solids in four dimensions - can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonné theorem, the reflective symmetries of the Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors generating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic solids can thus in turn be interpreted as vertices in four-dimensional space, giving a simple construction of the four-dimensional polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these polytopes have `mysterious' symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter groups, which can be shown to be a general property of the spinor construction. These considerations thus also apply to other root systems such as A(1)\oplus I(2)(n) which induces I(2)(n)\oplus I(2)(n), explaining the existence of the grand antiprism and the snub 24-cell, as well as their symmetries. These results are discussed in the wider mathematical context of Arnold's trinities and the McKay correspondence. These results are thus a novel link between the geometries of three and four dimensions, with interesting potential applications on both sides of the correspondence, to real three-dimensional systems with polyhedral symmetries such as (quasi)crystals and viruses, as well as four-dimensional geometries arising for instance in Grand Unified Theories and string and M-theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...