Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 50(2): 250-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24484502

RESUMO

Capture-related injuries or deaths of wildlife study subjects pose concerns to researchers, from considerations for animal welfare to inflated project costs and biased data. Capture myopathy (CM) is an injury that can affect an animal's survival ≤ 30 days postrelease, but is often difficult to detect without close monitoring and immediate necropsy. We evaluated the influence of capture and handling on postcapture movement in an attempt to characterize movement rates of animals suffering from CM. We captured and global positioning system-collared 95 white-tailed deer (Odocoileus virginianus) in central and northern New York during 2006-2008. Six juveniles died within 30 days postrelease, and necropsy reports indicated that two suffered CM (2%). We compared postcapture movement rates for juveniles that survived >30 days with those that died ≤ 30 days postcapture. Survivor movement rates (43.74 m/hr, SD = 3.53, n = 28) were significantly higher than rates for deer that died within 30 days (17.70 m/hr, SD = 1.57, n = 6) (P<0.01). Additionally, movement rates of juveniles that died of CM (15.1 m/hr) were 5.1 m/hr lower than those for juveniles that died of other causes ≤ 30 days postcapture (20.2 m/hr), but we were unable to evaluate this statistically because of insufficient sample size. We found no difference in vital rates (temperature, heart rate, respiration rate) during handling between survivors and juveniles that died within 30 days postcapture but observed that survivors were in better body condition at capture. These results suggest that deer likely to die within the 30-day CM window can be identified soon after capture, provided that intensive movement data are collected. Further, even if necropsy reports are unavailable, these animals should be censored from analysis because their behavior is not representative of movements of surviving animals.


Assuntos
Cervos/lesões , Imobilização/veterinária , Restrição Física/efeitos adversos , Ferimentos e Lesões/veterinária , Sistemas de Identificação Animal , Animais , Feminino , Imobilização/métodos , Masculino , Mortalidade , Atividade Motora , Ferimentos e Lesões/mortalidade , Ferimentos e Lesões/patologia
2.
PLoS One ; 9(1): e84368, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24409293

RESUMO

Contacts between hosts are essential for transmission of many infectious agents. Understanding how contacts, and thus transmission rates, occur in space and time is critical to effectively responding to disease outbreaks in free-ranging animal populations. Contacts between animals in the wild are often difficult to observe or measure directly. Instead, one must infer contacts from metrics such as proximity in space and time. Our objective was to examine how contacts between white-tailed deer (Odocoileus virginianus) vary in space and among seasons. We used GPS movement data from 71 deer in central New York State to quantify potential direct contacts between deer and indirect overlap in space use across time and space. Daily probabilities of direct contact decreased from winter (0.05-0.14), to low levels post-parturition through summer (0.00-0.02), and increased during the rut to winter levels. The cumulative distribution for the spatial structure of direct and indirect contact probabilities around a hypothetical point of occurrence increased rapidly with distance for deer pairs separated by 1,000 m-7,000 m. Ninety-five percent of the probabilities of direct contact occurred among deer pairs within 8,500 m of one another, and 99% within 10,900 m. Probabilities of indirect contact accumulated across greater spatial extents: 95% at 11,900 m and 99% at 49,000 m. Contacts were spatially consistent across seasons, indicating that although contact rates differ seasonally, they occur proportionally across similar landscape extents. Distributions of contact probabilities across space can inform management decisions for assessing risk and allocating resources in response.


Assuntos
Doenças dos Animais/transmissão , Doenças Transmissíveis/veterinária , Cervos , Sistemas de Informação Geográfica , Análise Espaço-Temporal , Doenças dos Animais/epidemiologia , Animais , Busca de Comunicante , Feminino , Masculino , New York/epidemiologia , Vigilância da População , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...