RESUMO
Bats transition from flightless, milk-sustained infants to volant, foraging juveniles in the span of a few weeks to a few months. This rapid development is accompanied by fast growth and weight gain, but behavioral development remains poorly understood. We addressed development of maternal support and pup independence for Peters' tent-making bat (Uroderma bilobatum) in light of population level reproductive patterns. Uroderma bilobatum exhibited seasonal bimodal polyoestry at our study site. Births occurred over one month within a reproductive bout, resulting in variable levels of behavioral development for pups in the same maternity group. Pups reached adult forearm length more quickly than adult mass, facilitating the ontogeny of flight. Maternal support consisted of nursing and thermoregulation, transporting pups between night and day roosts, and milk provisioning between foraging bouts. We did not observe provisioning with solid food. Pups interacted only with their own mother. Between 25 to 40 days into a reproductive bout they matured by suckling progressively less and fledging over multiple nights in a two-stage process assisted by mothers. We describe several parturition events as well as a novel form of stereotyped tactile stimulation involving forearm pulses by mothers against suckling pups that may serve to promote weaning. Rapid behavioral changes in both pups and mothers accompany pup morphological development through maturation.
Assuntos
Comportamento Animal/fisiologia , Quirópteros/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Voo Animal/fisiologia , Masculino , Especificidade da EspécieRESUMO
BACKGROUND: The relationships between group size, survival, and longevity vary greatly among social species. Depending on demographic and ecological circumstances, there are both positive and negative effects of group size variation on individual survival and longevity. For socially foraging species in particular there may be an optimal group size that predicts maximum individual survival that is directly related to the potential for information transfer, social coordination, and costs of conspecific interference. Our aim was to investigate this central aspect of evolutionary ecology by focusing on a socially foraging bat, Molossus molossus. This species optimizes foraging success by eavesdropping on the echolocation calls of group members to locate ephemeral food patches. We expected to find the highest survival and longest lifespans in small groups as a consequence of a trade-off between benefits of information transfer on ephemeral resources and costs of conspecific interference. RESULTS: In a mark-recapture study of 14 mixed-sex M. molossus social groups in Gamboa, Panama, spanning several years we found the expected relatively small and intermediate, but stable groups, with a mean size of 9.6 ± 6.7 adults and juveniles. We estimated survival proxies using Cox proportional hazard models and multistate-mark recapture models generated with recapture data as well as automated monitoring of roost entrances in a subset of the groups. Median survival of females was very short with 1.8 years and a maximum estimated longevity of 5.6 years. Contrary to our expectations, we found no relationship between variation in group size and survival, a result similar to few other studies. CONCLUSIONS: Strong selection towards small group size may result from psychoacoustic and cognitive constraints related to acoustic interference in social foraging and the complexity of coordinated flight. The short lifespans were unexpected and may result from life at the energetic edge due to a highly specialized diet. The absence of a relationship between group size and survival may reflect a similar but optimized survival within the selected range of group sizes. We expect the pattern of small group sizes will be consistent in future research on species dependent on social information transfer about ephemeral resources.
Assuntos
Quirópteros , Animais , Comportamento Alimentar , Feminino , Expectativa de Vida , Masculino , Comportamento de Massa , Panamá , Densidade Demográfica , Gravidez , Comportamento SocialRESUMO
Long-distance migration is a rare phenomenon in European bats. Genetic analyses and banding studies show that females can cover distances of up to 1,600 km, whereas males are sedentary or migrate only short distances. The onset of this sex-biased migration is supposed to occur shortly after rousing from hibernation and when the females are already pregnant. We therefore predicted that the sexes are exposed to different energetic pressures in early spring, and this should be reflected in their behavior and physiology. We investigated this in one of the three Central European long-distance migrants, the common noctule (Nyctalus noctula) in Southern Germany recording the first individual partial migration tracks of this species. In contrast to our predictions, we found no difference between male and female home range size, activity, habitat use or diet. Males and females emerged from hibernation in similar body condition and mass increase rate was the same in males and females. We followed the first migration steps, up to 475 km, of radio-tagged individuals from an airplane. All females, as well as some of the males, migrated away from the wintering area in the same northeasterly direction. Sex differences in long-distance migratory behavior were confirmed through stable isotope analysis of hair, which showed greater variation in females than in males. We hypothesize that both sexes faced similarly good conditions after hibernation and fattened at maximum rates, thus showing no differences in their local behavior. Interesting results that warrant further investigation are the better initial condition of the females and the highly consistent direction of the first migratory step in this population as summering habitats of the common noctule occur at a broad range in Northern Europe. Only research focused on individual strategies will allow us to fully understand the migratory behavior of European bats.
Assuntos
Migração Animal , Quirópteros/fisiologia , Hibernação , Caracteres Sexuais , Animais , Peso Corporal , Quirópteros/crescimento & desenvolvimento , Dieta , Feminino , Cabelo , Masculino , Muda , Estações do AnoRESUMO
Animals must optimize their daily energy budgets, particularly if energy expenditures are as high as they are in flying animals. However, energy budgets of free-ranging tropical animals are poorly known. Newly miniaturized heart rate transmitters enabled this to be addressed this in the small, energetically limited, neotropical bat Molossus molossus. High-resolution 48 h energy budgets showed that this species significantly lowers its metabolism on a daily basis, even though ambient temperatures remain high. Mean roosting heart rate was 144 beats min(-1), much lower than expected for a 10 g bat. Low roosting heart rates combined with short nightly foraging times (37 min night(-1)) resulted in an estimated energy consumption of 4.08 kJ day(-1), less than one-quarter of the predicted field metabolic rate. Our results indicate that future research may reveal this as a more common pattern than currently assumed in tropical animals, which may have implications in the context of the effect of even small temperature changes on tropical species.
Assuntos
Quirópteros/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Frequência Cardíaca/fisiologia , Animais , Peso Corporal , Dióxido de Carbono/metabolismo , Quirópteros/metabolismo , Feminino , Consumo de Oxigênio/fisiologia , Panamá , Telemetria , Temperatura , Clima TropicalRESUMO
Many bat species live in groups, some of them in highly complex social systems, but the reasons for sociality in bats remain largely unresolved. Increased foraging efficiency through passive information transfer in species foraging for ephemeral insects has been postulated as a reason for group formation of male bats in the temperate zones. We hypothesized that benefits from group hunting might also entice tropical bats of both sexes to live in groups. Here we investigate whether Molossus molossus, a small insectivorous bat in Panama, hunts in groups. We use a phased antenna array setup to reduce error in telemetry bearings. Our results confirmed that simultaneously radiotracked individuals from the same colony foraged together significantly more than expected by chance. Our data are consistent with the hypothesis that many bats are social because of information transfer between foraging group members. We suggest this reason for sociality to be more widespread than currently assumed. Furthermore, benefits from group hunting may also have contributed to the evolution of group living in other animals specialized on ephemeral food sources.
Assuntos
Quirópteros/fisiologia , Voo Animal/fisiologia , Comportamento Predatório/fisiologia , Comportamento Social , Animais , Ecolocação/fisiologia , Feminino , Masculino , Modelos Biológicos , Panamá , Telemetria/instrumentação , Telemetria/métodos , Fatores de TempoRESUMO
Many animals in the tropics of Africa, Asia and South America regularly visit so-called salt or mineral licks to consume clay or drink clay-saturated water. Whether this behavior is used to supplement diets with locally limited nutrients or to buffer the effects of toxic secondary plant compounds remains unclear. In the Amazonian rainforest, pregnant and lactating bats are frequently observed and captured at mineral licks. We measured the nitrogen isotope ratio in wing tissue of omnivorous short-tailed fruit bats, Carollia perspicillata, and in an obligate fruit-eating bat, Artibeus obscurus, captured at mineral licks and at control sites in the rainforest. Carollia perspicillata with a plant-dominated diet were more often captured at mineral licks than individuals with an insect-dominated diet, although insects were more mineral depleted than fruits. In contrast, nitrogen isotope ratios of A. obscurus did not differ between individuals captured at mineral lick versus control sites. We conclude that pregnant and lactating fruit-eating bats do not visit mineral licks principally for minerals, but instead to buffer the effects of secondary plant compounds that they ingest in large quantities during periods of high energy demand. These findings have potential implications for the role of mineral licks for mammals in general, including humans.