RESUMO
Members of the archaeal order Caldarchaeales (previously the phylum Aigarchaeota) are poorly sampled and are represented in public databases by relatively few genomes. Additional representative genomes will help resolve their placement among all known members of Archaea and provide insights into their roles in the environment. In this study, we analyzed 16S rRNA gene amplicons belonging to the Caldarchaeales that are available in public databases, which demonstrated that archaea of the order Caldarchaeales are diverse, widespread, and most abundant in geothermal habitats. We also constructed five metagenome-assembled genomes (MAGs) of Caldarchaeales from two geothermal features to investigate their metabolic potential and phylogenomic position in the domain Archaea. Two of the MAGs were assembled from microbial community DNA extracted from fumarolic lava rocks from Mauna Ulu, Hawai'i, and three were assembled from DNA obtained from hot spring sinters from the El Tatio geothermal field in Chile. MAGs from Hawai'i are high quality bins with completeness >95% and contamination <1%, and one likely belongs to a novel species in a new genus recently discovered at a submarine volcano off New Zealand. MAGs from Chile have lower completeness levels ranging from 27 to 70%. Gene content of the MAGs revealed that these members of Caldarchaeales are likely metabolically versatile and exhibit the potential for both chemoorganotrophic and chemolithotrophic lifestyles. The wide array of metabolic capabilities exhibited by these members of Caldarchaeales might help them thrive under diverse harsh environmental conditions. All the MAGs except one from Chile harbor putative prophage regions encoding several auxiliary metabolic genes (AMGs) that may confer a fitness advantage on their Caldarchaeales hosts by increasing their metabolic potential and make them better adapted to new environmental conditions. Phylogenomic analysis of the five MAGs and over 3,000 representative archaeal genomes showed the order Caldarchaeales forms a monophyletic group that is sister to the clade comprising the orders Geothermarchaeales (previously Candidatus Geothermarchaeota), Conexivisphaerales and Nitrososphaerales (formerly known as Thaumarchaeota), supporting the status of Caldarchaeales members as a clade distinct from the Thaumarchaeota.
RESUMO
The properties and microbial turnover of exopolymeric substances (EPS) were measured in a hypersaline nonlithifying microbial mat (Eleuthera, Bahamas) to investigate their potential role in calcium carbonate (CaCO(3)) precipitation. Depth profiles of EPS abundance and enzyme activities indicated that c. 80% of the EPS were turned over in the upper 15-20 mm. Oxic and anoxic mat homogenates amended with low-molecular-weight (LMW) organic carbon, sugar monomers, and different types of EPS revealed rapid consumption of all substrates. When comparing the consumption of EPS with that of other substrates, only marginally longer lag times and lower rates were observed. EPS (5-8%) were readily consumed during the conversion of labile to refractory EPS. This coincided with a decrease in glucosidase activity and a decrease in the number of acidic functional groups on the EPS. Approximately half of the calcium bound to the EPS remained after 10 dialyses steps. This tightly bound calcium was readily available to precipitate as CaCO(3). We present a conceptual model in which LMW organic carbon complexed with the tightly bound calcium is released upon enzyme activity. This increases alkalinity and creates binding sites for carbonate and allows CaCO(3) to precipitate. Therefore, this model explains interactions between EPS and CaCO(3) precipitation, and underscores the critical role of aerobic and anaerobic microorganisms in early diagenesis and lithification processes.
Assuntos
Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Polímeros , Cloreto de Sódio , Bactérias Aeróbias/enzimologia , Bactérias Aeróbias/metabolismo , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/metabolismo , Bahamas , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Carbono/metabolismo , Precipitação Química , Glucosidases/metabolismo , Compostos Orgânicos/metabolismo , Polímeros/química , Polímeros/metabolismoRESUMO
For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages. Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth. Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many discussions have taken place over their structure and form, we have very little information on their functional ecology and how such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective assemblages could produce a rapid (12-24 h) and significant increase in sediment stability that continued in a linear fashion over the period of the experimentation (228 h). Importantly, it was also found that light was required for the assemblages to produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications for the understanding of early stromatolite development and highlight the potential importance of the evolution of photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to dominate shallow coastal environments for 80% of the biotic history of the earth.
Assuntos
Sedimentos Geológicos/microbiologia , Fotossíntese , Microbiologia da Água , Bahamas , Evolução Biológica , Ecossistema , Evolução Planetária , Fósseis , Sedimentos Geológicos/química , Geologia , Luz , Microscopia Confocal , Oxigênio , PaleontologiaRESUMO
Marine stromatolites are generated through the interactions of environmental parameters and specific microbial processes. The activities of endolithic bacteria, that bore canals through calcium carbonate (CaCO(3)) sand grains (ooids) and reprecipitate the CaCO(3) as a single layer (i.e. micritic laminae) are especially important in the longer term stability of the stromatolite macrostructure. Image analysis and classification approaches have been used previously, but only seldom as a quantitative microscopic tool. Here, we develop a new approach that enables the quantification of microscale (i.e. micrometers to millimeters) spatial structure within marine stromatolites. To demonstrate our approach, images were acquired from two different layers of a stromatolite: "orange layers", where microboring of canals within ooids was relatively abundant, and "white layers" where microboring was greatly reduced or lacking. Images were then transformed into spatial maps. Computation of canal and ooid grain areas within each image was conducted and statistically compared between replicate samples from the two stromatolite layers. This allowed quantification of the areas of ooid grains that were microbored. Based on our results, we suggest that our method could be widely applicable to sedimentary environments, and other areas of fundamental research.
Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Biologia Marinha/métodos , Bahamas , Carbonato de Cálcio/química , Geografia , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Água do MarRESUMO
Bahamian soft marine stromatolites consist of cyanobacterial biofilms and carbonate sand grains (ooids) embedded in their extracellular polymeric secretions (EPS). EPS were isolated from natural marine stromatolites and the laboratory cultured stromatolite forming cyanobacterium isolate Schizothix sp. Laboratory investigations were conducted to examine biochemical characteristics and the role of EPS in the inhibition of CaCO3 precipitation. EPS consisted of acid polysaccharides and proteins. SDS-PAGE and amino acid analysis suggested that EPS from both soft marine stromatolite and Schizothrix sp. mat contained small proteins (38 kD and 45 kD) enriched in aspartic acid and glutamic acid. Also, immuno blotting suggested that natural EPS contain high molecular weight acid polysaccharide (500 k) which may represent cross-linked products of laboratory cultured Schizothrix sp. acid polysaccharide (300 k). EPS from both soft marine stromatolite and laboratory cultured Schizothrix sp. inhibited CaCO3 precipitation in vitro, as determined using pH drift assays examining pH decrease which occur in response to CaCO3 precipitation. PH drift assays of enzymatically and chemically modified EPS isolated from soft marine stromatolite and laboratory cultured Schizothrix sp. indicated that both uronic acids and protein fractions may be involved in the inhibition of CaCO3 precipitation.